X
تبلیغات
مکانیک خودرو
تاريخ : یکشنبه بیست و چهارم مهر 1390 | 17:45 | نویسنده : ناصح مهاجر

موتور اتومبيل

 

موتور

متعلقات موتور اتومبيل

1- پیستون موتور : پیستون قطعه استوانه شکلی است که در داخل سیلندر حرکت رفت و برگشت

دارد و  زمانهای موتو ر را به  وجود  می اورد ضمنا  نیروهای تراکمی و انبساط ناشی از احتراق را

تحمل می کند

2- شاتون موتور :  شاتون موتور اهرمی است که به پیستون موتور و میل لنگ متصل بوده  , باعث

تبدیل شدن نیروی خطی پیستون به نیروی چرخشی میل لنگ می گردد

3-سیلندر موتور  :    استوانه ای است تو خالی که از بالا به  وسیله سرسیلندر مسدود شده و از

 طرف پایین با حرکت پیستون حجم ان مرتبا تغییر می کند

4- میل لنگ موتو ر میل لنگ یا محور موتور میله ای است که کار انجام شده در روی پیستون را به

صورت گشتاور و دور دریافت نموده قدرت را به سیستم انتقال قدرت ارسال می کند

5- شمع موتور   شمع موتور وسیله ای است متشک از  دو الکترود و بدنه سرامیکی که بر اثر ولتاژ

زیاد ایجاد شده و به وسیله کویل در زمان مناسب طراحی  شده ایجاد  جرقه  می نماید و مخلوط

متراکم شده سوخت را منفجر می کند

6-سوپاپ موتور  قطعه فلزی است قارچی شکل که در روی دریچه های ورودی و خروجی سرسیلندر

قرار  گرفته  است  و در زمانهای  کار موتور با باز و بسته شدن خود نقش متفاوتی را ایفا می کند

 

7- سرسیلندر موتور  سرسیلندر قطعه ای است که به عنوان درپوش در بالای بدنه سیلندر بسته

می شود تا محفظه احتراق را به وجود اورد معمولا در روی سرسیلندر جای شمع و جای سوپاپ و

غیره قرار دارد

8- راهنمای سوپاپ یا گیت موتور استوانه ای که سوپاپ در ان حرکت کرده , به علت داشتن لقی

 مجاز, حرکت سوپاپ را کنترل می کند

9-مجاری اب موتور  محفظه های عبور اب در اطراف سیلندر و سرسیلندر می باشد که اب در ان

گردش کرده , گرمای بیش از اندازه موتور را به رادیاتور انتقال می دهد

 

10 – مانتیفولد موتور  لوله های انتقال دهنده ای است که سوخت را به موتور وارد یا دودهای حاصل

از احتراق را به فضای ازاد هدایت می کند

11- تایپیت موتور  استوانه ای است که در زیر ساق سوپاپ و یا میل تایپیت قرار دارد و سوپاپ را از

محل نشست خود بلند می کند و حرکت خود را از بادامک میل سوپاپ می گیرد

12- میل سوپاپ موتور  محوری است که حرکت خود را از میل لنگ می گیرد و دارای بادامکهای است

که به تایپیت حرکت رفت و برگشتی میدهد به علاوه استوانه خارج از مرکزی دارد که پمپ بنزین را

به کار می اندازد و نیز دارای دندانه محرک اویل پمپ و دلکو می باشد

13- فلایویل یا چرخ طیار موتور  قطعه نسبتا سنگینی است که به انتها میل لنگ بسته شده که جهت

ذخیره انرژی تولید شده در موتور و بازپس دهی ان در زمان مورد نیاز به کار می رود

14-بادامک موتور  قطعه ای است بادام شکل که در روی محور میل سوپاپ ساخته شده و حرکت

دورانی محور را به حرکت خطی قطعه دیگری که با ان درگیر است میسر می کند

15- فنر سوپاپ موتور  وسیله ای است که در موارد لزوم سوپاپ را می بندد

16 – اسبک موتور  وسیله ای است که در موارد لزوم سوپاپ را باز می کند

17 – کاربراتور موتور  کاربراتور دستگاهی است که در ان سوخت موتور با نسبت معینی و در شرایط

مختلف کارکرد موتور اماده می شود

18 – دلکو موتور  دستگاهی است که برق فشار قوی را در  زمان لازم بین شمعها تقسیم می کند

19- فیلتر روغن موتور  وسیله ای است که ناخالصیهای شناور در روغن را جذب می کند

20-پمپ روغن   دستگاهی است که روغن را با فشار معین به  قسمتهای محرک موتور می رساند

21- موتور استارت  دستگاه الکتریکی است که برای راه اندازی موتور به کار می رود  

22- میله اندازه گیر روغن موتور وسیله ای است که سطح روغن را در کارتل به  وسیله ان مشاهده

می کنند

23 – وایرهای فشار قوی در موتور  وسایلی هستند که برق فشار قوی را از دلکو  به سر شمعها

می رسانند

24 – دینام موتور   دستگاهی است که بنزین را از باک به کاربراتور انتقال می دهد

25-پمپ بنزین موتور  دستگاهی است که بنزین را از باک به کاربراتور انتقال می دهد

26- ترموستات موتور  دستگاهی است که در مدار خروجی اب موتور قرار گرفته  , درجه حرارت

اب موتور را کنترل و در حد معینی ثابت نگاه می دارد

27- واتر پمپ موتور  دستگاهی است که اب را بین موتور و رادیاتور به گردش در می اورد

28 – پروانه موتور  قطعه ای است که هوای محیط خارج را  از لابلای پره های رادیاتور مکیده , اب

را خنک می کند

 

طرز کار موتور(چهار عمل اصلی در موتور)

 

مكش تراكم انفجار تخليه موتور

چرخه کار موتور

اعمال یا رویدادهایی  که  در موتور شمع دار  انجام  می شود  به چهار بخش  یا  حرکت پیستون

  تقسیم میشود این حرکتها عبارتند از مکش تراکم انبساط و تخلیه هر حرکت از  نقطه  مرگ بالایی

 به پایینی است در موتورهای چهار زمانه یک چرخه کامل  از رویداد ها در سیلندر  مستلزم  دو

 دور چرخش کامل میل لنگ است

موتورها

 

زمان مکش : در حین حرکت مکش در موتور شمع دار سوپاپ بنزین (هوا)  باز می شود و پیستون

به طرف پایین حرکت میکند در نتیجه در بالای پیستون خلا جزئی ایجاد می شود فشار جو مخلوط هوا

سوخت را از  طریق دریچه  بنزین به درون  سیلندر سرازیر  میکند  وقتی پیستون از نقطه مرگ

پایینی  میگذرد  سوپاپ بنزین بسته می شود در نتیجه بخش بالایی سیلندر درزبندی می شود

 

زمان تراکم :پس از عبور پیستون از نقطه مرگ پایینی حرکت رو به بالای  ان اغاز می شود و هر

 دو سوپاپ بسته می شوند پیستونی که بسمت بالا می رود مخلوط هوا  –  سوخت را متراکم

 می کند وان را به فضای کوچکتری بین سطح بالایی پیستون و سرسیلندر  محدود می سازد این

 فضا را محفظه احتراق می نامند در موتورهای شمع دار معمولا مخلوط هوا وسوخت چنان متراکم

 می شود که حجم ان به یک هشتم  حجم اولیه  یا کمتر برسد  میزان  تراکم  مخلوط هوا و سوخت

 را نسبت تراکم می نامند نسبت تراکم بین حجم اولیه به نسبت مخلوط ثانویه را نسبت  تراکم گویند

 اگر حجم مخلوط پس از تراکم به یک هشتم حجم اولیه برسد ان گاه نسبت تراکم 8 به 1 خواهد شد

 

زمان انبساط :وقتی در پایان حرکت تراکم پیستون به نقطه مرگ بالایی می رسد شمع  جرقه

می زندگرمای حاصل از جرقه شمع مخلوط هوا – سوخت متراکم را مشتعل می سازد این مخلوط

 به سرعت میسوزد و دمای زیادی تا حدود 2500 درجه سانتیگراد تولید می شود و همین افزایش

 فشار پیستون راپایین می راند شاتون این نیرو را به میل لنگ انتقال می دهد و میل لنگ میچرخد

 تا چرخهای خودرو را بچرخاند

 

زمان تخلیه: وقتی در حرکت انبساط پیستون به نقطه مرگ پایینی نزذیک می شود سوپاپ دود باز

میشود پیستون پس از عبور از نقطه مرگ پایینی دوباره بالا می رود گازهای حاصل از احتراق از

 دریچه دود خارج می شوند وقتی پیستون به نقطه مرگ بالای نزدیک می شود سوپاپ بنزین باز

 می شود  وقتی  پیستون از  نقطه مرگ بالایی می گذرد  و حرکت  به طرف پایین را اغاز میکند

 سوپاپ دود بسته می شود و حرکت  مکش دیگری اغاز می شود و کل چرخه – مکش-تراکم –

 انبساط  و تخلیه تکرار  می شود تا  وفتی  موتور روشن است این اعمال همه سیلندر ها تکرار

 می شوند

 

موتور خودرو



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:53 | نویسنده : ناصح مهاجر

پیستون

پيستون

پیستون قطعه ای استوانه ای شکل است که در درون سیلندر بالا و پایین می رود در حرکت انبساط تا 18000  نیوتون نیرو به  طور ناگهانی  به کف  پیستون  وارد می شود  وقتی با سرعت زیاد رانندگی می کنید این اتفاق در هر سیلندر 30 تا 40 بار در ثانیه رخ می دهد  دمای  کف پیستون به 2200 درجه سانتیگراد یا بیشتر میرسد پیستون باید به اندازه ای محکم باشد که بتواند این تنشها را تحمل کند درعین حال پیستون باید چنان سبک  باشد  که بار  وارد بر  یاتاقانها کاهش  یابد وقتی پیستون در نقطه مرگ بالایی یا پایینی متوقف می شود و سپس در جهت عکس به حرکت در میاید با وارد به یاتاقان راتغییر می دهد پیستون را از الومینییوم می سازند زیرا فلزی سبک است در بیشتر موتورهای خودرو از پیستونهای تمام لغزان استفاده می شود دامنه یا قسمت پایین پیستون را می تراشند تا هم وزن ان کاهش یابد و هم جا برای وزنه های تعادل میل لنگ باز شود قطر پیستون موتور خودرو بین 76 تا 122میلیمتر تغییر می کند وزن این پیستون ها در حدود 450 گرم است همه پیستون ها باید هموزن باشد  تا موتور دچار  لرزش  نشود  پیستون های الومینیومی را به  یکی از دو روش ریخته گری  و  اهنگری می سازند  پیستون های  اهنگری شده  را  با  استفاده از لقمه  الومینیوم  الیاژی  می سازند پس از ماشینکاری پیستون ان را طبق روال خاصی گرم و سرد می کنند به اصطلاح روی ان عملیات گرمایی انجام میدهند تا خواص مطلوب را پیدا کنند پس از این مرحله روی بسیاری از پیستونها را با لایه نازکی از اب قلع یا مواد دیگر می پوشانند در نتیجه هنگام راه اندازی موتور سطح پیستون ساییده نمی شود سایش هنگامی رخ می دهد که ذرهای فلزی از یک قطعه متحرک به قطعه دیگر انتقال یابد ودر نتیجه حفره ها یا شیارهای  روی سطح  در تماس  ایجاد  شود  در  بیشتر موتورهای  پرقدرت از پیستونهای اهنگری شده استفاده میکنند پیستون های  اهنگری  شده  در  مقایسه  با پیستون های  ریخته گری متراکم تر و محکم ترند و در دمای پایینتری کار می کنند زیرا گرما را بهتر انتقال می دهند قطر پیستون در ناحیه سر از همه  جا  کمتر است نتیجه  در بالای پیستون فضای بیشتری برای انبساط وجود دارد بعضی پیستونها از محور گژنپین تا پایین دامنه شیب دارند در این پیستون قطر در پایین دامنه از همه جا بیشتر است خلاصی پیستون:خلاصی پیستون(یا خلاصی دامنه پیستون)عبارت اند فاصله بین جدار سیلندر و دامنه پیستون این فاصله معمولا بین 0.025 تا0.10 میلیمتر است وقتی موتور روشن است پیستون به رینگ های روی لایه ای از روغن حرکت می کنند که این فاصله را پر کرده  است اگر خلاصی پیستون خیلی کم باشد در نتیجه اصطکاک زیاد و سایش شدید توان موتور کاهش می یابد در این ممکن است پیستون به جداره سیلندر بچسبد و به اصطلاح گریپاژ می کند  اگر خلاصی  پیستون بیش از حد باشد سبب زدن پیستون می شود

کنترل انبساط پیستون:  پیستونهای  الومینیومی  در نتیجه افزایش دما بیشتر از سیلندر های

چدنی منبسط می شوند و همین امر ممکن است سبب از بین رفتن خلاصی پیستون شود پیستون از جداره سیلندر بیشتر گرم می شود و همین امر نیز سبب  می شود که باز هم بیشتر انبساط یابد اما اگر کف پیستون  خیلی  داغ  شود  ممکن  است سبب  خود سوزی شود در نتیجه ترتیب احتراق بهم می خورد و  ممکن  است موتور ای ببیند یک از راهای کنترل انبساط پیستون افزایش اهنگ دفع گرما از کف پیستون است هرچه کف پیستون ضخیمتر باشد گرمای بیشتری دفع خواهد شدو پیستون خنکتر کار می کند اما افزایش ضخامت کف پیستون  سبب افزایش وزن ان می شود همچنین اگر کف پیستون خیلی سرد کار کند لایه های مخلوط هوا – سوخت مجاور ان نمی سوزد مخلوط هوا-سوخت نسوخته از  طریق  اگزوز  در محیط  پخش  می شود در  نتیجه  بازده  موتور کاهش و دود ان افزایش می یابد برای کمک کردن به کنترل انبساط پیستون بیشتر پیستونها را طوری تراشکاری می کنند که اتاقک انها اندکی بیضوی شود وقتی پیستونهای اتاقک – بیضوی گرم می شوند شکل بیضوی خود رااز دست می دهند و گرد می شوند راه دیگر کنترل  انبساط  پیستون  تعبیه یک پشت بندی فولادی در پیستون  است  وقتی  پیستون گرم می شود  این تقویت کننده انبساط کف پیستون و برامدگی بوش گژنپین را محدود می کند

شکل کف پیستون :در بسیاری از موتور ها از پیستون کف تخت استفاده می شود اما شکلهای کف پیستون ممکن است مطابق طرح موتور تغییر  کند  شکل کف پیستون مطابق با شکل سرسیلندر و شکل محفظه  احتراق  نیز تغییر  کند بعضی  از پیستون ها  کف پیستون فنجانی یا فرو رفتگی جای سوپاپ دارد که وقتی سوپاپها باز می شوند می توانند در ان حرکت کنند در بعضی از پیستون ها سر پبیستون گنبدی یا به شکلهای دیگر است تا تلاطم در محفظه احتراق افزایش یابد

خارج از مرکزی گژن پین  : زدن  پیستون  صدایی است  که  از جابجا شدن  پیستون ازیک طرف سیلندر به طرف دیگر ان در اغاز  حرکت  انبساط  ناشی می شود  برای جلوگیری  از زدن پیستون در بسیاری از موتورها از پیستون هایی استفاده می شود که گژنپین انها اندکی خارج از مرکز است این خارج از مرکزی به طرف دامنه پیستون است که به منزله سطح  فشار گیر اصلی  عمل  می کند  این همان سطحی از  پیستون  است که  در حین حرکت  انبساط  بیشترین تماس را با جداره سیلندر پیدا می کند با نصب خارج از مرکز  گژنپین پیستون نوعی حرکت نوسانی انجام می دهد و بر یک طرف ان نسبت به طرف دیگر فشار بیشتری وارد می شود فشار ناشی از احتراق سبب می شود که پیستون در حال حرکت به سمت بالا وقتی به  نقطه  مرگ بالایی نزدیک می شود  اندکی به طرف راست  کج می شود در نتیجه سر پایینی سطح  فشار  گیر اصلی با جداره سیلندر  تماس می گیرد پس از  انکه پیستون از نقطه مرگ بالایی گذشت   صاف  می شود در این هنگام  سطح فشار  گیر اصلی به  طور کامل با جداره سیلندر تماس پیدا می کند این  تماس نوعی عمل روبشی است  که  زدن پیستون را به حداقل می رساند در نتیجه همین عمل موتور  ارامتر کار می کند  و دوام پیستون  افزایش  میابد زدن پیستون معمولا فقط در موتورهای کهنه ای  مشاهده می شود  که جداره سیلندر های  انها  ساییده شده و دامنه پیستون انها ساییده یا شکسته شده است

تقویت رینگ نشین  : وقتی پیستون در  سیلندر  بالا و پایین می رود رینگهای تراکم هم در رینگ نشینها بالا و پایین میرود وقتی پیستون  در  نقطه های مرگ بالایی و پایینی جهت حرکت خود را عوض میکند هر رینگ لحظه ای از پیستون عقب می ماند  این تاخیر لحظه ای از اثر لختی و خلاصی جانبی رینگ ناشی می شود لحظه ای  بعد بغل رینگ نشین به رینگ می خورد و ان را در سیلندر بالا و پایین می راند  وقتی حرکت انبساط  اغاز می شود  فشار  شدید ناشی از احتراق رینگ تراکم بالایی را به شدت به سطح پایینی رینگ نشین می فشارد این  برخورد های  مکرر سبب  ساییدگی رینگ نشین بالایی می شود برای مقابله با این سایش در بعضی از پیستونها  رینگ نشین بالایی را تقویت می کند یکی از روش های مورد استفاده در پیستونهای ریخته گری ان است  که رینگ نشین  بالایی را بطور کامل به صورت یک مغزی از جنس چدن یا چدن نیکل دار در قالب قرار می دهند و الومینیوم را دور ان بریزند  روش دیگر  نصب  یک  فاصله گذار  فولادی است که به منزله  سطح بالای  رینگ نشین عمل می کند در هنگام تولید پیستون به روش اهنگری ناحیه رینگ نشین را فلز پاشی می کنند

پیستون های کم اصطکاک : این پیستونها را از الیاژ الومینیوم با سیلیسیم می سازند پس از انکه پیستون ریخته شد روی دامنه ان ماده ای شیمیایی می مالند که ذرات الومینیوم را از سطح می زدایدو ذرات سیلیسیم را باقی می گذارد در نتیجه سطح سخت تر و بادوامتری حاصل می شود



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:52 | نویسنده : ناصح مهاجر

شاتون ها

شاتون

شاتون میله ای فولادی و سخت که به طریقه ریخته گری یا اهنگری ساخته می شود مقطع شاتون را برای مقاومت بیشتر به صورت  تیر اهن Iمی سازند  شاتون ارتباط پیستون را با میل لنگ برقرار نموده و ضربه حاصله از نیروی سوخت که بر روی پیستون فشار می اورد را بر روی میل لنگ منتقل و لنگ راپایین برده و نهایتا حرکت رفت و برگشتی پیستون بوسیله شاتون به میل لنگ وارد می شود که درمیل لنگ به حرکت دورانی تبدیل می گردد در دورهای زیاد فشار نیروهای کششی زیادی به شاتون وارد می شود بنابراین بایستی جنس ان بسیار مرغوب و حتی الا مکان سبک باشد قسمت بزرگ شاتون توسط  کپه یاتاقان  به وسیله پیچ و مهره روی یک لنگ میل لنگ  سوار  می شود و  یک  یاتاقان دو نیمه ای بین شاتون و میل لنگ قرار میگیرد و انتهای کوچک شاتون توسط گژن پین به پیستون متصل  می گردد داخل محل قرار گرفتن گژن پین از یک بوش جهت کم کردن اصطکاک استفاده می شود روغنکاری به وسیله شاتون انجام می شود و به دو صورت می باشد

1-      در بعضی موتورها یک مجرای سرتاسری در طول شاتون بوده و روغن  را از سوراخ یاتاقان گرفته و به بوش گژنپین می رساند

 2- بعضی دیگر از موتورها سوراخ روغن پاش در یک سمت شاتون قرار گرفته و سبب روغن کاری دیواره سیلندر می گردد هنگام گردش میل لنگ موقعی که سوراخ میل لنگ و شاتون در یک امتداد قرار می گیرند روغن از مجرای میل لنگ و شاتون عبور کرده و از سوراخ بغل شاتون به دیوار سیلندر پاشیده می شود روغن دیواره سیلندر نیز به وسیله  رینگ روغنی وارد شیار و سوراخهای پیستون شده و روی بوش گژنپین می ریزد و انرا روغنکاری می کند یاتاقانهای متحرک شاتون به دو دسته تقسیم می شوند

1- نوع یاتاقانهای یک پارچه :

در این نوع قسمت بزرگ شاتون به صورت یکپارچه  ساخته شده و در داخل ان معمولا غلطک های کوچک و یا بلبرینگ قرار می گیرد این نوع یاتاقان  بیشتر در موتورهای دو زمانه بنزینی و در بعضی از موتورهای کوچک استفاده می شود

2- نوع یاتاقانهای دو تکه :

در این نوع قسمت بزرگ شاتون به دو قطعه  نیم دایره  شکل تقسیم شده که یکی از نیم دایره ها (کپه پایین را تشکیل می دهد ) پس از گذاشتن  هر دو  قسمت در روی گلوئی متحرک میل لنگ به وسیله پیچ ومهره به یکدیگر متصل می شوند  

شاتون موتورهای خورجینی (v) شكل

طرز قرار گرفتن شاتون در روی موتورهای خورجینی بر سه نوع می باشد

1- نوع شاتون موازی :

در این نوع موتور دو عدد شاتون مربوط به دو  پیستون در  کنار  یکدیگر و در روی یک گلوئی میل لنگ بسته می شوند ساختمان این نوع شا تون ها مثل شاتون های معمولی است  

2- نوع شاتون ضربدری (متقاطع)

در این نوع شاتون نیز مثل قبلی یاتاقانهای متحرک هر دو شاتون مربوط به دو سیلندر مقابل به هم در روی یک گلوئی میل لنگ قرار میگیرد با این تفاوت که  (کفه یکی از شاتون ها به شکل دو شاخه بوده و انتهای شاتون دیگر باریک می باشد ) در نتیجه انتهای یکی از شاتونها داخل شاتون دیگر شده و سپس هر دو روی میل لنگ بسته می شوند  

3- نوع شاتون لولایی :

در این نوع یکی از شاتونها در روی گلوئی میل لنگ وصل می شود و شاتون دیگر که سر ان دارای یک سوراخ می باشد و به وسیله یک پین به قسمت بالای کفه متحرک پشت زین کفه شاتون اولی وصل می گردد

4- عیب های شاتون ها :

معمولا به ندرت اتفاق می افتد که شاتون احتیاج به تعویض پیدا کند مگر اینکه صدمه شدیدی در اثر تصادف به شاتون وارد شود و یا در اثر کار مداوم موتور شاتون  کج شده و یا تاب بر میدارد و به طور کلی محور گژنپین کاملا موازی محور لنگ متحرک میل لنگ و برای اطمینان هنگام جمع کردن  موتور باید شاتون نو یا کار کرده را قبل از بستن روی موتور از نظر خمیدگی (تاب داشتن) پیچیدگی امتحان و ازمایش نمود و به خاطر این که اگر شاتون خم شده باشد محور گژنپین با محور لنگ میل لنگ موازی نبوده و باعث اعمال نیروی جانبی  نامناسب  به میل لنگ و یاتاقانهای متحرک و همچنین به گژن پین وارد می شود

تذکر مهم برای شاتون :

1- بلندی طول شاتون با قدرت موتور نسبت مستقیم دارد یعنی  اگر طول شاتون بلند باشد موتور دارای  قدرت  زیاد  است ولی تعداد دور ان  در دقیقه کمتر است از موتور با شاتون کوتاه تراختلاف وزن شاتون ها در موقع تعویض در موتورهای سواری از  پنج  گرم و در موتورهای سنگین ازده گرم بیشتر نباشد در مواقع ضروری می توان به مقدار  کم از پای شاتون تراشیده و وزن شاتونها را یکسان  نمود  در هنگام جا  زدن بوش کوچک  شاتون  (بوش گژن پین)  باید به مجرای روغن بوش دقت نماید که اشتباه قرار نگیرد به خاطر این که مسیر روغن شاتون  را کور  میکند البته این موضوع برای شاتون های که در مسیر روغن گژن پین از وسط شاتون می گذرد

2-تذکر برای قرار دادن خار نگه دارنده گژن پین در شاتون باید توجه داشته باشیم هنگام جا زدن خار گژنپین حتما دهانه خار به سمت بالای پیستون قرار بگیرد و در غیر این صورت این امکان وجود دارد که خار از محل خود خارج شود به این دلیل در هنگام احتراق ضربه وارده بر روی پیستون  اگر  دهانه به سمت  پایین  باشد باعث جمع شدن فنر و خارج شدن ان میگردد ولی اگر به سمت بالا باشد در اثر ضربه دهانه بازتر شده و کاملا در محل خود قرار می گیرد

گژن پین (انگشتی پیستون)

گژن پین میله ای است استوانه ای که جنس ان از فولاد می باشد و قسمت خارجی ان نرم است وسطح داخلی ان سخت است تا گژنپین در مقابل ضربات حاصل از  احتراق مقاوم باشد برای مقاومت بیشتر ان را ابکاری و صیقل می دهند گژن پین محور اتصال دهنده شاتون به پیستون است اتصال و درگیری گژن پین با پیستون و شاتون به پنج صورت انجام می گیرد

1- گزن پین در داخل بوش برنزی ومحل نشیمن خودروی پیستون کاملا ازاد بوده ومی تواند به راحتی حرکت نماید این حالت کاملا ازاد نامیده می شود وپیستون در این نوع  معمولا الومینیومی  است و در این وضعیت خارهای نگهدارنده در شیارهای مخصوص داخل سوراخهای پیستون قرار گرفته و ازحرکت گژن پین جلوگیری می کند

2- سوراخ سر کوچک شاتون چاکدار بوده و به وسیله پیچ قفلی بسته می شود هم چنین در دوسمت پیستون بوش های برنزی در داخل نشیمن گژنپین قرار داده شده و پیستون از نوع چدنی است

3- گژنپین به وسیله پیچ قفلی مانند حالت قبل بسته شده  فقط در سوراخهای پیستون بوش برنزی وجود ندارد همچنین پیستون از نوع الومینیومی است

4- گژن پین با فشار دستگاه پرس به سر کوچک  شاتون  جا زده  شده و سر کوچک شاتون و سوراخهای پیستون بوش ندارد قطر گژن پین 0.3میلیمتر بزرکتر از قطر سر کوچک شاتون است تا گژن پین کاملا در محل سفت بوده و نتواند لق شود در این حالت بهتر است که قبل از زمان درگیری سر کوچک شاتون را بوسیله کوره های مخصوص یااجاق برقی گرم کرده تا حالت انبساطی پیدا کند سپس خیلی سریع درگیری را انجام داده تا وقتی که شاتون سرد شود و به خالت اولیه خود برگردد کاملا گژن پین را سفت می کند

5- گژن پین به وسیله پیچ قفلی به پیستون بسته شده و سر کوچک شاتون دارای بوش برنزی بوده و پیستون از نوع چدنی است

 



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:46 | نویسنده : ناصح مهاجر
میل سوپاپ (میل بادامک ) و زنجیر سفت کن

میل سوپاپ یا میل بادامک و زنجیر سفت کن

میل سوپاپ یا میل بادامک وظیفه  باز و بستن  سوپاپ ها  را بر عهده دارد  بر روی میل سوپاپ دایره اکسانتیر و دنده اویل پمپ وجود دارد میل سوپاپ نیروی خود را از میل لنگ توسط دنده دریافت مینمایدوظیفه باز و بسته کردن سوپاپ یا فرمان موتور را به عهده دارد در روی میل سوپاپ بادامکهای قرار دارندکه می توانند حرکت دورانی را به حرکت مستقیم الخط  تبدیل نمایند شکل بادمکها در کار موتور تاثیر بسزایی داشته و مقدار اوانس و ریتارد سوپاپها نیز روی بادامکها محاسبه شده است بادامک در میل سوپاپ

برای هر یک از سوپاپها یک بادامک در نظر گرفته شده است این بادامکها تحت زاویه مخصوص قرار گرفته و با فاصله معینی از یکدیگر عمل خود را انجام می دهند هر بادامک بایستی دارای مشخصات زیر باشد

1- بعد از کار کردن تغییر شکل ندهد    2- در موقع باز و بسته کردن سوپاپها ایجاد ضربه و لرزش نکند

 

قسمتهای مختلف بادامک

1- دایره مبنا   2- حد باز شدن (شیب ملایم باز شدن )    3- پهلوی باز کردن سوپاپ    4- پهلوی بسته شدن سوپاپ     5- حد بسته شدن (شیب ملایم بسته شدن ) انتقال نیروی میل لنگ به میل سوپاپ ممکن است به سه صورت (دنده به دنده – زنجیری – تسمه ای ) انجام شود چون در هر 720 درجه گردش میل لنگ یک احتراق در هر سیلندر انجام می شود و در هر سیکل یکبار احتیاج به باز و بسته شدن هرسوپاپ وجود دارد لذا گردش میل سوپاپ نصف گردش میل لنگ می باشد یعنی (در 360 درجه گردش) و نسبت دنده انها نصف می باشد یعنی دنده میل سوپاپ دو برابر دنده میل لنگ می باشد

انواع بادامک در میل سوپاپ

بادامکهای میل سوپاپ از نظر شکل ظاهری به سه نوع تقسیم می شوند که هر یک دارای خواص به خود هستند

1- بادامک نوک تیز    2- بادامک با نوک صاف و تخت   3- بادامک با نوک نیم گرد

وظایف میل سوپاپ (میل بادامک)

1- باز و بسته کردن  سوپاپ ها  توسط  چخش  میل سوپاپ  و قرار  گرفتن  بادامک ها زیر تایپت ها

2- روی میل سوپاپ یک دایره خارج از مرکز (اکسانتریک)وجود دارد که با قرار گرفتن شیطانک پمپ بنزین وبالا و پایین رفتن ان انتقال بنزین از باک به کاربراتور توسط پمپ بنزین انجام می شود

3- روی میل سوپاپ دندانه ای وجود دارد ک این دنده دلکو و اویل پمپ را بکار می اندازد معایبی که میل سوپاپ می تواند داشته باشد

1- خوردگی بادامکها که این حالت باعث بهم خوردن تایمینگ سوپاپها می شود

2- خوردگی یا شکستگی دنده اویل پمپ و دلکو

3- لقی بیش از حد بین  میل سوپاپ   و  یاتاقانهای  ثابت ان  که  این لقی  باعث کاهش فشار روغن می شود در ضمن لقی بین 0.05   تا 0.1 میلیمتر می باشد که به وسیله میکرومتر داخلی یا ساعت اندازه گیری می توان اندازه گیری  کرد و هنگام  جا  زدن بوش باید دقت کرد که سوراخ روغنکاری در محل خود قرار بگیرد

4- در موتورهایی که  ارتباط حرکتی  میل لنگ و میل سوپاپ  مستقیما  دو چرخ دنده می باشد برای تشخیص دقیق  میزان  لقی دو دنده  می توان  از میکرومتر  ساعتی  استفاده  نمود  بدین ترتیب که میکرومتر  ساعتی  را به وسیله پایه اش روی  بلوک  موتور بسته و نوک ساعت را روی یکی از دنده های چرخ دنده قرار داده و با حرکت چرخ دنده دیگر میزان لقی دنده ها را از روی  انحراف عقربه میکرومتر ساعتی معلوم می کنیم

5- برای ازمایش میزان لقی دو دنده می توان با قرار  دادن  تیغه فیلر  در محل تماس دنده ها لقی را اندازه گرفت میزان لقی مجاز بین دو چرخ دنده 0.07 تا 0.12 میلیمتر  می باشد در صورتیکه این لقی بیش از حد مجاز باشد باید هر دو چرخ دنده را عوض نمود

6- در موتورهای که از زنجیر استفاده می شود معمولا در اثر کار موتور زنجیره طولش زیاد می شود و همچنین چرخ دنده ها نیز سائیده می شوند برای ازمایش زنجیر طول ان را با یک زنجیر نو مقایسه می کنند اگر افزایش  طول  زنجیر کم باشد فقط بایستی زنجیر را عوض نمود سپس دنده های چرخ دنده ها  را  بازدید نمود در  صورتی  که طول زنجیر خیلی زیاد شده  علاوه  بر زنجیر چرخ  دنده ها نیز بایستی عوض شوند به طور کلی لقی غیر مجاز بین ندها و افزایش طول زنجیر سبب  مختل شدن تایمینگ سوپاپها و تولید صداهای غیر عادی می گردد

7- کنترل و بازرسی لقی طولی میل سوپاپ فاصله بین محور یاتاقان جلو و پلاک (واشر گلوئی را زمانی که میل سوپاپ روی پایه  مخصوص قرار داده ایم با فیلر اندازه می گیریم که این فاصله 0.03 تا 0.08 میلیمتر می باشد

8- کنترل خمش میل سوپاپ دو محور جا یاتاقانی کناره را روی دو پایه جناغی که روی صفحه صافی قرار دارد می گذاریم سپس ساعت را روی یکی از یاتاقانهای میل سوپاپ قرار داده و میل سوپاپ را بوسیله دست یک دور کامل میگردانیم و مقدار خمش را به دست می اوریم که نباید از 0.05 میلیمتر تجاوز کند در صورت بیشتربودن می توانیم ان را به وسیله پرس در حالت سرد صاف نمائیم

9- کنترل لقی جانبی به وسیله ساعت اندازه گیر میل سوپاپ را به سمت عقب حرکت می دهیم سپس ساعت را با مقداری پیش فشار روی ان قرار می دهیم و ساعت را صفر می کنیم با کشیدن دنده به سمت جلو و فشار امدن روی سوزن مقدار لقی جانبی را نشان می دهند  

زنجیر سفت کن

زنجیر سفت کن همانطور که از  اسم ان پیداست  برای گرفتن شلی  زنجیر و کم کردن صدای چرخ دنده ها بوده و همچنین از سائیدگی زنجیر و چرخ دنده ها جلوگیری می کند در نتیجه تایمینگ سوپاپهابهم نخورده و سوپاپها بموقع باز و بسته شده امروزه در اغلب موتورها زنجیر سفت کن اتوماتیک نصب شده است این نوع زنجیر سفت کن ها با فشار روغن موتور و فنر کار کی کنند روغن موتور با فشار وارد سیلندر زنجیر سفت کن  شده و پیستون مربوطه را روی قسمت لاستیکی فشار داده و از شل شدن زنجیر جلوگیری می کند  هر چند زنجیر های کوتاه نیاز به زنجیر  سفت کن ندارند ولی اغلب از ان استفاده می شود اغلب زنجیر سفت کن ها  مجهز به قطعهای جغجغه ای مانندی  هستند که از برگشت قطعه لغزنده جلوگیری می کند در موتورهایی که  میل بادامک  ان  در سر سیلندر تعبیه شده از زنجیر سفت کن شامل یک تیغه  فنری  با  پوشش  نئوپرین  در طرف  شل زنجیر و یک صفحه لاستیکی را با پوشش نئوپرین در طرف دیگر ان می باشد و گاهی از چزخ دنده کمکی قابل تنظیم استفاده می کند



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:45 | نویسنده : ناصح مهاجر
یاتاقان

کپه یاتاقان

در موتور هر جایی که دو سطح داشته باشد از یاتاقان استفاده می شود این نوع یاتاقانها را یاتاقانهای استوانه ای می گویند زیرا مانند یک استوانه دور یک شفت گردنده قرار می گیرد چون لنگهای میل لنگ اجازه نمیدهند که یاتاقانها مانند یک بوش کامل مدور وارد  محورهای ثابت و متحرک میل لنگ شوند لذا این بوشها به صورت دو قطعه نیم دایره ای ساخته می شود

 ساختمان یاتاقان

پوسته یاتاقان از فولاد یا برنز ساخته شده است این فولاد استحکام و مقاومت لازم را به یاتاقان می دهددر روی  این  قسمت یک یا  چند لایه  مواد  یاتاقانی به  ضخامت چند هزارم اینچ قرار گرفته است علت استفاده از مواد نرم در یاتاقان این است که در صورت تاثیر عوامل خارجی فقط مواد یاتاقانی از بین میرودو میل لنگ سالم خواهد ماند یاتاقانها دارای شیار  روغن بوده و این شیار روغن را در تمام سطح یاتاقان پخش می کند

مواد یاتاقان

مواد یاتاقان ها الیاژفلزات سرب قلع مس انتیموان یا فلزات سرب قلع جیوه کالیم الومینیوم به نسبتهای معین ترکیب می شوند یا بابیت که در موتورهای سبک بکار می رود از یک لایه پوسته فولادی و یک لایه بابیت ساخته شده است در ساختمان بابی از دو فلز اصلی قلع و سرب استفاده شده است در بعضی از یاتاقانها نسبت به نوع موتور دو یا سه لایه مواد یاتاقانی روی پوسته قرار دارد و در موتورهای سنگین به چهار لایه در یاتاقان نیز می رسد

طرز قرار گرفتن لایه ها بر روی پوسته فولادی به شرح زیر است

الف – مواد یاتاقانی الیاژمس و سرب   

ب : لایه نیکل

ج: لایه الیاژسرب قلع مس

د: مواد گردی قلع

خصوصیات یک یاتاقان خوب

ساختن یک یاتاقان ایده ال  ساده نیست  زیرا بالا  بردن یک خاصیت در یاتاقان ایجاد معایب دیگر در ان می کند در هر حال یاتاقان خوب باید دارای مشخصات زیادی باشد که بطور خلاصه به ان اشاره می شود

الف : مقاومت یاتاقان در مقابل فشار حمل بار و ضربات ناشی از احتراق

موتورهای امروزی چون نسبت تراکمی بالا دارند بنابراین نیروی زیادی به یاتاقان وارد می شود که حدود200کیلوگرم بر سانتی متر مربع می باشد که یاتاقان این بار را باید تحمل کند

ب: نرمی و قابلیت فرو بردن ذرات خارجی در یاتاقان ذرات چرک و گرد غبار و خاک با هوا وارد موتور می شود کاملا توسط صافی هوا گرفته نمی شود و با رغن حرکت کرده و مقداری از ان همراه روغن از داخل یاتاقان خارج نمی شود ماده یاتاقان طوری باید باشد که بتواند این مواد خارجی را در خود فرو ببرد تا یاتاقان و شفت از خراش برداشتن و سائیده شدن مصون بماند پس یاتاقان به اندازه کافی باید نرم باشد تا خاصیت فرو بردن مواد خارجی را در خود داشته باشد  

ج: مقاومت در برابر خستگی در یاتاقان هرگاه فلزی در معرض تنش های مداوم قرار بگیرد انعطاف پیدا کرده و خم می گردد سپس این فلز سخت شده ترک برداشته و یا شکسته می شود لذا یاتاقانها که در معرض بارهای زیاد هستند بایستی بتواند درمقابل این بارهای متغیر ایستادگی کنند بدون این که به حد خستگی برسد و تمایل به ترک یا شکستگی از خود نشان ندهند 

د : مقاومت در برابر خوردگی در یاتاقان در اثر احتراق مواد خورنده تولید می شود که برای فلزات مفید نیست همچنین بنزین های بدون سرب خاصیت شیمیایی روغن را تغییر داده و حالت خورندگی یاتاقانها را افزایش می دهد ماده یاتاقان باید در مقابل این خورندگی مقاومت داشته باشد در قدیم از یاتاقانهای مسی و سربی استفاده می شد ولی امروزه از یاتاقانهای الومینیومی  سربی استفاده می شود  این نوع یاتاقان در مقابل خورندگی بهتر مقاومت می کند

ه : مقاومت در مقابل سائدیگی در یاتاقان ماده یاتاقان باید به اندازه کافی سخت و محکم باشد تا به سرعت سائیده نشود از طرف دیگر باید به اندازه کافی نرم باشد تا توانایی فرو بردن و انطباق داشته باشد

ز: قابلیت هدایت حرارتی کلیه یاتاقانها در اثر گردش میل لنگ ایجاد حرارت می کنند لذا مواد یاتاقانی بایستی قابلیت هدایت حرارتی بیشتری داشته باشد تا بتواند حرارت را انتقال دهند

یاتاقان

روغن کاری یاتاقان ها

از مدار اصلی روغن مسیری به کپه های ثابت روی بلوک راه دارد که روغن از ان مسیر وارد سوراخ مجرای روغن میل لنگ شده و سطح کلیه یاتاقانها را روغن کاری می نماید این  روغن بصورت قشر نازکی (فیلم روغن) به سطوح متحرک محور میل لنگ و سطوح ثابت یاتاقان می چسبد و در اثر فشار مدار روغن میل لنگ در بستری از روغن بصورت شناور می چرخد در ابتدای کار میل لنگ در اثر نیروی وزن خود در روی کف یاتاقان قرار دارد به محض روشن شدن موتور روغن در اثر چسبندگی به سطوح تماس مانند گوه ای میل لنگ را بلند کرده و در وسط یاتاقان نگه می دارد اصطکاکی که به این صورت ایجاد می شود اصطکاک غلظتی روغن بوده و اگر به علت تشکیل نشدن قشر روغن فلز میل لنگ با فلز یاتاقان تماس بگیرد نیروی اصطکاک بالا رفته و گرمای یاتاقان بحدی می رسد که بابیت را ذوب کرده و صدای ناشی از یاتاقان سوزی بگوش می رسد بین پوسته یاتاقانها و میل لنگ خلاصی مجازی وجود دارد که اصطلاحا این خلاصی را فاصله روغن نیز می گویند هر چه این خلاصی بیشتر باشد روغن به سرعت ازیاتاقان ها خارج می شود اندازه این خلاصی در موتورهای مختلف متفاوت بوده و حدودا یک هزارم اینچ یا سه صدم میلیمتر بیشتر معمول است در صورتی که ان خلاصی دو برابر گردد مقدار ریزش روغن 5 برابر می شود  افزایش خلاصی روغن سبب نرسیدن روغن به یاتاقانها مجاور می گردد زیرا پمپ روغن فقط مقدار معینی از روغن را می تواند جابجا کند در نتیجه بیشتر روغنها از یاتاقان های نزدیک مجرای روغن بیرون ریخته و به یاتاقانهای دورتر کمتر روغن  می رسد کاهش خلاصی روغن در یاتاقانها سبب می شود که عمل روغنکاری صحیح انجام نگرفته و سائیدگی انها سریع تر شود همچنین مقدار روغن که به دیواره سیلندر پاشیده می شود کافی نبوده و روغنکاری دیواره سیلندر  و رینگ ها بخوبی انجام نمیشود در ضمن زمانی که لقی یاتاقانها زیاد باشد بجز اینکه روغن ریزی موتور زیاد می شود و فشار روغن پایین می اید و افزایش روغن به دیواره سیلندر زیاد می شود که باعث روغن سوزی موتورمی گردد

یاتاقانهای پین دار و یاتاقانهای خاردار

در بعضی از موتورها یاتاقانهای اصلی بوسیله سوراخی که دارند در پین جا یاتاقانی قرار می گیرند که از چرخش یاتاقان جلوگیری شود در ضمن در بیشتر موتورها از یاتاقانهای استفاده می شود که یک طرفپوسته یاتاقان بصورت خاردار ساخته می شود که در شیار جا یاتاقان قرار گرفته و حرکت چرخشی ان راضامن می کند

پیش بینی لبه اضافی یاتاقان

پوسته یاتاقانها باید به خوبی با جا یاتاقانی تماس بگیرد تا اولا بطور کامل گرمای ایجاد شده را از طریق جا یاتاقانی انتقال دهد و نسوزد ثانیا با داشتن تکیه گاه مناسب می تواند نیروی وارده را به جایاتاقانی متصل نموده و خراب نشود برای اطمینان از تکیه نمودن کامل پوسته یاتاقان بهتر است لبه های نیمه یاتاقانی پایین را به اندازه دو صدم تا هفت صدم میلیمتر از لبه های کپه یاتاقانی بلندتر تنظیم کنند با این عمل در صورت سفت کردن یاتاقان نیروی اولیه به پوسته یاتاقان وارد شده و ان را بخوبی به تکیه گاهش می فشارد یک چنین یاتاقانی نیروی وارد به محور را بطور یکنواخت در جهت شعاعی به جا یاتاقانی انتقال می دهد

عیب های یاتاقانها

1- خراشهای بوجود امده توسط ذرات خارجی

الف: خراشهای بوجود امده در امتداد سطح داخلی یاتاقان

ب: پدید امدن حفره های بر روی سطح داخلی یاتاقان علل پیدایش 

الف : الودگی روغن

ب: تمیز نکردن دقیق قطعات موتور هنگام مونتاژ ان

2- وارد شدن بار به لبه های یاتاقان

شکل ظاهری : ایجاد شدن خراشهای شدید در یک طرف هر دو نیم یاتاقان

علل پیدایش

الف: مخروطی بودن محل تماس میل لنگ با یاتاقان متحرک

ب: مخروطی بودن نشیمن یاتاقان ثابت

ج: بزرگتر از حد معمول بودن شعاع گردی میل لنگ

د: خوب موازی نبودن صحیح میل لنگ

ه : کج بودن شاتون

3- بوجود امدن خراشهای شدید در قسمت میانی و همچنین امکان ترک برداشتن لایه روئی یاتاقان کنده و جمع شدن لایه روئی یاتاقان

شکل ظاهری

الف: سائیدگی شدید موضعی در قسمت میانی یاتاقان بطوریکه وارد شدن بار بیش از حد مجاز بر یاتاقان به ترک برداشتن و ایجاد شکاف در لایه روئی یاتاقان می انجامد

ب: جابجایی موضعی فلز سطح روئی یاتاقان

علل پیدایش

الف : محدب بودن محل تماس میل لنگ با یاتاقان متحرک

ب: محدب بودن نشیمن یاتاقان ثابت

4- ایجاد سائیدگی هایی به شکل نوار نازک در قسمت انتهایی یاتاقان

شکل ظاهری

سائیدگی شدید به صورت اثری نازک در قسمت انتهایی یاتاقان بدین ترتیب که بین لبه یاتاقان و اثر بوجود امده به علت سائیدگی اثری دیگر از  منتبح از حرکت  میل لنگ  مشاهده  نمی شود اثرهای بوجود امده به علت سائیدگی می توانند در یک انتهای یاتاقان ظاهر شوند علل پیدایش میل لنگهای که ناصحیح صیقل داده شده اند  

5- جابجا شدن کپه شاتون

شکل ظاهری : سائیدگی لایه روی یاتاقان بر اثر ایجاد اصطکاک شدید در اطراف سطح های بر روی هم افتاده دو نیم یاتاقان بطور قرینه

علل پیدایش

جابجا شدن کپه شاتون بر اثر اشتباه مونتاژ کردن ان

6- زنگ زدگی

شکل ظاهری

خورده شدن و از بین رفتن سطح روئی یاتاقان بصورت سوراخهای پراکنده و یا بطور کامل

علل پیدایش

الف : بکار بردن مواد اضافی در روغن که هماهنگی لازم را با نحوه عمل روغن ندارد

ب: الوده شدن روغن توسط ورود احتمالی مواد قلیایی از طریق واشرها

ج: بموقع عوض نکردن روغن

7- اشتباه قرار دادن یاتاقان در محل نشستن ان در رابطه با سوراخها تامین کننده روغن

شکل ظاهری

سائیده شدن و خوردگی شدید سطح داخلی یاتاقان بعلت نرسیدن روغن لازمه به ان

علل پیدایش

توجه نکردن و عدم دقت کافی در هنگام قرار دادن و مونتاژ کردن یاتاقانها

8- اشتباه مونتاژ کردن در رابطه با میله کوتاه (خار) نگهدارنده یاتاقان

شکل ظاهری

به علت بلندتر از حد معمول بود میله کوتاه (خار) نگهدارنده در محل جا افتادن این خار در پشت

یاتاقان همین امر موجب اصطکاک زیاد و سائیدگی موضعی در همین قسمت سطح روئی یاتاقان می گردد

علل پیدایش

اشتباه مونتاژکردن و بلندتر از حد لازم بودن (خار)نگاه دارنده یاتاقان

یاتاقان موتور



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:43 | نویسنده : ناصح مهاجر

ميل لنگ و فلایویل

ميل لنگ يك قطعه ريختگي يكپارچه از آلياژ فولاد مي‌باشد كه با عمليات حرارتي و چكش‌كاري تهيه مي‌شود و داراي استحكام مكانيكي قابل توجهي است، ميل لنگ بايد به اندازه كافي محكم باشد تا بتواند ضربه‌هائي را كه در زمان احتراق به پيستون وارد مي‌شود بدون پيچش زياد تحمل نمايد. علاوه بر اين ميل لنگ بايد با نهايت دقت متعادل گردد تا از ارتعاشات آن كه در اثر وزن خارج از مرگز لنگ به وجود مي‌آيد جلوگيري به عمل آيد. براي متعادل ساختن ميل لنگ، در مقابل هر لنگ وزنه‌هائي به ميل لنگ اضافه شده است.

قدرتي كه از طرف پيستون‌ها به ميل لنگ داده مي‌شود يكنواخت نيست. موقعي كه زمان هاي قدرت با هم اشتراك پيدا مي‌كنند (در موتورهاي شش سيلندر و هشت سيلندر) لحظه‌اي وجود دارد كه در آن مقدار قدرت از زمان‌هاي ديگر بيشتر است، اين عمل موجب مي‌شود كه سرعت ميل لنگ كم يا زياد شود. البته چرخ لنگر بر اين تمايل غلبه مي‌كند. فلايول يك فلكه نسبتاً سنگين مي‌باشد كه به اتنهاي عقب ميل لنگ با پيچ و مهره بسته مي‌شود، اينرسي چرخ لنگر تمايل دارد كه آن را با سرعت ثابت حركت دهد بنابراين چرخ لنگر در موقعي كه ميل لنگ تمايل به افزايش سرعت داشته باشد قدرت را مي‌گيرد و هنگامي كه تمايل به كاهش سرعت داشته باشد قدرت را به آن پس مي‌دهد .

 

میل لنگ و فلاویل

                                  

علاوه بر اين عمل، چرخ لنگر در محيط‌ خارجي خود دندانه‌هائي دارد كه در موضع روشن كردن موتور با دنده محرك دستگاه استارت درگير مي‌شود. ضمناً دستگاه كلاچ به قسمت جلوي ميل لنگ سه قطعه مختلف سوار مي‌شود كه عبارتند از يك چرخ دنده يا چرخ زنجير كه ميل بادامك را به حركت در ميآورد، يك نوسان گير و يك پولي پروانه، پولي، توسط يك تسمه پروانه، پروانه، پمپ آب و ژنراتور را مي‌چرخاند.

چرخ لنگر

در موتورهاي چند سيلندر زمان‌هاي قدرت پشت سر هم به وجود مي‌آيد و يا اين كه مقداري با هم اشتراك دارند يعني هنوز يك زمان قدرت به پايان نرسيده قدرت ديگر توليد مي‌شود و به اين ترتيب قدرت به طور يكنواخت توليد مي‌گردد. با اين حال جريان قدرت به اندازه مطلوب يكنواخت نيست. اگر قدرت موتور باز هم يكنواخت‌تر گردد موتور آرام‌تر كار خواهد كرد. براي رسيدن به اين هدف از چرخ لنگر (فلايول) استفاده مي‌شود، چرخ لنگر يك فلكه نسبتاً سنگين مي‌باشد كه به عقب ميل لنگ موتور متصل شده است.

براي اين كه بهتر به كار چرخ لنگر پي ببريم يك موتور تك سيلندر را در نظر مي‌گيريم. اين موتور در هر چهار زمان يك زمان قدرت دارد. در ضمن زمان‌هاي سه گانه ديگر يعني در زمان تنفس كه خطوط هوا و بنزين وارد سيلندر مي‌شود، و در زمان تراكم كه مخلوط در داخل سيلندر مي‌گردد، و همچنين در زمان تخليه كه گازهاي سوخته از سيلندر به خارج رانده مي‌شود، موتور مقداري انرژي مصرف مي‌كند. بنابراين در زمان قدرت، موتور سرعت مي‌گيرد و در زمان‌هاي ديگر سرعت خود را از دست مي‌دهد. هر چرخ يا فلكه‌اي كه حركت دوراني داشته باشد از آن جمله فلايول هميشه مايل است حالت حركت خود را حفظ كند و يا به عبارت ديگر در مقابل تغيير سرعت از خود مقاومت نشان مي‌دهد (اين تماي به علت اينرسي ماده مي‌باشد). هنگامي كه موتور به افزايش سرعت ميل داشته باشد، چرخ لنگر در مقابل آن مقاومت مي‌كند، موقعي كه موتور به كاهش سرعت ميل داشته باشد باز چرخ لنگر در مقابل آن مقاومت مي‌كند.

با وجود اين در موتورهاي تك سيلندر مقداري افزايش و كاهش سرعت وجود دارد ولي فلايول اين تغييرات سرعت را به حداقل ممكن مي‌رساند. در حقيقت چرخ لنگر مقداري از انرژي موتور را در زمان قدرت و افزايش سرعت در خود ذخيره مي‌كند و بعد در زمان هائي كه موتور قدرت توليد نمي‌كند آن را به موتور پس مي‌دهد. در موتورهاي چند سيلندر نيز چرخ لنگر به همين روش كار مي‌كند و ماگزيمم سرعت را به هم نزديك مي‌كند و سرعت را يكنواخت مي‌نمايد. علاوه بر اين فلايول محلي براي نگهداري قطعات كلاچ فراهم مي‌سازد. ضمناً روي فلايول دنده‌اي وجود دارد كه در موقع استارت زدن يا روشن كردن موتور با دنده محرك استارت درگير مي‌شود.

ارتعاش گير يا ضربه‌گير ميل لنگ

ميل لنگ در معرض نيروهاي مختلف و متناوب قرار دارد و در آن ارتعاشات پيچشي به وجود مي‌آيد. ارتعاشات متناوب، باعث تاب برداشتن ميل لنگ مي‌شود. پيچش ناموزون در جلوي ميل لنگ، در سرعت معيني اتفاق مي‌افتد. مثلاً ممكن است در دورهاي1200، 1600 يا 2400 دور در دقيقه به حداكثر برسد. شدت ارتعاشات در دورهاي بين 1200 تا 1600 دور در دقيقه است و نيز در فاصله بين 1600 تا 2400 ارتعاشات ميل لنگ تشديد مي‌گردد.

ارتعاشات ميل لنگ را به وسيله ارتعاش گير كاهش مي‌دهند. ارتعاش‌گير، از يك فلايول كوچك كه در جلوي ميل لنگ به وسيله بوش‌هاي لاستيكي و صفحه اصطكاكي به پولي يا چرخ دنده اتصال دارد، تشكيل شده است و همراه آن مي‌گردد.

فلايو‌گير، مانند فلايول انتهاي ميل لنگ در موقع ازدياد ناگهاني سرعت، مقداري از انرژي را جذب نموده، در موقع كاهش دور، انرژي خود را به ميل لنگ تحويل مي‌دهد. در جلوي ميل لنگ عواملي مانند دينام، واتر پمپ پروانه و غير قرار دارد كه همواره به نگه داشتن جلوي ميل لنگ تمايل دارند. بنابراين براي حذف تأثيرات عوامل كاهنده سرعت، ارتعاش‌گير كمك چشم‌گيري در كار میل لنگ مي‌كند.

ارتعاش‌گير وزنه‌اي

به پولي ميل لنگ متصل مي‌باشند. در شكل سمت چپ، بوش لاستيكي بزرگي در چند موضع روي فلايول بسته مي‌شود كه از وسط لاستيك آن پيچ‌هاي اتصال دهنده عبور كرده، فلايول ارتعاش‌گير را به پولي متصل مي‌سازد. در شكل وسط، فلايول يك ديسك فولادي بزرگي است كه به وسيله لاستيك‌هاي وسط از ميل لنگ نيرو گرفته يا به آن نيرو وارد مي‌كند.

فلایویل
در شكل فلايول به وسيله يك فلانچ لاستيكي و يك درپوش به سر ميل لنگ بسته مي‌شود. فلانچ لاستيكي مانند بوش‌هاي لاستيكي در دو نوع ديگر عمل مي‌كند.

ارتعاش‌گير هيدروليكي

اين ارتعاش‌ براساس اينرسي فلايولي كه در محفظه‌ي روغن شناور است، كار مي‌كند. پوسته يا محفظه‌ي روغن به دنده سر ميل لنگ بسته شده، همراه آن گردش مي‌كند. فلايول داخل روغن بر اثر نيروي اصطكاك روغن، ديرتر از ميل لنگ، انرژي اخذ مي‌كند. همچنين ديرتر از حركت باز مي‌ايستد و لذا ارتعاش‌ ميل لنگ را خنثي مي‌كند. شكل (15ـ6)

 

ارتعاش گیر

 



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:41 | نویسنده : ناصح مهاجر
تایمینگ سوپاپها و فیلر گیری و قیچی سوپاپها

تایمینگ

 

در مبحث اشنایی  با کار  موتور در دو زمان مکش و  تخلیه  فرض  شد که  سوپاپ  هوا و  دود در نقطه ای مرگ بالا و مرگ پایین باز و بسته می شود قبلا  نیز  توضیح  داده شد  که در تعریف چهار عمل زمان تئوری باز و بسته  شدن  سوپاپها  بیان شده  است  در صورتی که  عملا و همانطوریکه  از  روی  شکل مشخص می باشد سوپاپ دود در زمان احتراق 45 در جه قبل از نقطه مرگ پایین باز می شود البته قابل ذکر است که این مقدار در ماشینهای  مختلف با هم فرق دارند و تا 5 درجه بعد از نقطه مرگ بالا یعنی در زمان مکش باز نگهداشته شود این زمان بخاطر این است که مقداری بیشتر دود از سیلندر خارج گردد موقعیکه سوپاپ دود 45 درجه قبل از نقطه مرگ پایین باز می شود فشار گاز بمیزان قابل توجهی تنزل پیدا می کند و مقدارکمی قدرت  تلف  می گردد  ولی در عوض مقدار بیشتری دود از سیلندر خارج می شود و به تنفس موتورکمک می کند به همین ترتیب باز کذاشتن سوپاپ گاز تا 45 درجه بعد از نقطه مرگ پایین در زمان تراکم به مخلوط گاز زمان  بیشتری برای وارد شدن به سیلندر می دهد تایمینک سوپاپ بستگی به شکل برامدگی بادامک  میل سوپاپ و ارتباط  چرخ دنده یا چرخ زنجیر میل لنگ و یل سوپاپ دارد تغییر دادن وضعیت چرخ دنده ها نسبت به یکدیگر زمان باز و بسته شدن سوپاپها را تغییر می دهد مقدار باز شدن زودتر از موقع رااوانس یا پیش عمل و دیر بسته شدن پیش از موقع را ریتارد یا پس عمل می گویند

دلیل وجود اوانس سوپاپ هوا (تایمینگ سوپاپ ها )

1- کمک به خروج دود       2- بالاتر رفتن راندمان حجمی بعلت بیشتر باز بودن سوپاپ هوا دلیل وجود ریتارد سوپاپ هوا (تایمینگ سوپاپ ها )بالاتر رفتن راندمان حجمی – پر شدن بیشتر بخاطر سرعت هوا بعلت فشار منفی خلا که بر اثر پایین رفتن پیستون بوجود امده است  

دلیل وجود اوانس سوپاپ دود (تایمینگ سوپاپ ها )

برای اینکه زمان  بیشتری برای تخلیه دود – پایین امدن  فشار هوا در اواخر مرحله احتراق و جلوگیری ازفشار دود در مرحله تخلیه  

دلیل وجود ریتارد سوپاپ دود (تایمینگ سوپاپ ها )

کمک به تخلیه کامل دود بر اثر سردی و گرمی مخلوط و دود –باز بودن بیشتر برای تخلیه کاملتر فیلر گیری موتور و لزوم ان فیلر گیری یکی از  مهمترين و ضروری ترین عملی است که تعمیر کار باید این عمل (فیلرزدن )را انجام دهد هر جسمی بر اثر حرارت  منبسط شده و بر طول و قطر و  حجمش  افزوده می شود قطعاتی که در موتور بکار  رفته اند  در  مقابل حرارت انبساط  پیدا می کنند  که در هنگام طراحی  موتور با  محاسبه  این  مقدار انبساط را  بخوبی جبران می کنند یکی از سیستمهای که انبساط در انها محسوس بوده و برای کار موتور تاثیر بسزایی دارد سیستم حرکت سوپاپها می باشد که کارخانه سازنده با توجه به جنس و حجم و ضریب انبساط قطعات مقداری فاصله بین انها در نظر گرفته است تا در هنگام انبساط این فاصله پر شود و کار باز و بسته شدن سوپاپها مختل نگردد در صورت عدم وجود  این  لقی  قطعات  در برابر گرما منبسط  شده  و چون  میدان  حرکتی در جهت  طولی ندارند به هم  فشار اورده  باعث  سائیدگی  تاب  برداشتن  و  خرابی قطعات می گردند مقدار این لقی توسط  کارخانجات  سازنده اندازه گیری و اعلام شده و انرا با فیلر اندازه و تنظیم میکنند  

نکات لازم برای فیلر گیری موتور

1- شناخت سوپاپها برای فیلر گیری       2- مقدار لقی و فاصله مجازی که باید برای سوپاپها با فیلر میزان کنیم بدست اورده باشیم           3- این مقدار لقی بسته به دستور کارخانه باید در حالت سرد یا گرم برای فیلر گیری موتور ماشین ضروری است         4- شناخت احتراق سیلندر های مورد نظر برای فیلر گیری از راههای مختلف          5- اماده کردن فیلر با شناخت نوع ماشین و تبدیل فیلر در صورت نیاز قبل از تشریح فیلر گیری به شناخت حالات و بدست اوردن ترتیب ان می پردازیم

فیلر

 

قیچی سوپاپهای موتور

قیچی سواپ ها در کار موتور تاثیر زیادی دارد برای  اینکه یک سیلندر در حالت تنفس قرار گیرد لازم است سوپاپ هوای ان شروع به باز شدن کند وقتی که پیستون از نقطه مرگ بالا بطرف نقطه مرگ پایین حرکت می کند و  سوپاپ هوا باز است  و در حالت تخلیه که  پیستون  از نقطه مرگ پایین به طرف نقطه مرگ بالا حرکت می کند  سوپاپ دود باز است  تا دود از داخل سیلندر تخلیه شود در قسمت تایمینگ سوپاپها دیدیم که  سوپاپ  هوا  چند  درجه مانده  که پیستون به نقطه  مرگ بالا  برسد باز  شده که این  نوع باز شدن را اوانس سوپاپ  هوا  نامیدیم زمانی که میل لنگ را می چرخانیم ابتدا سوپاپ دود باز شده تا در زمان تخلیه دود تخلیه شود و سپس  سوپاپ  دود  شروع به بسته  شدن  کرده  و  در انتهای بسته شدن سوپاپ دود دود سوپاپ  هوا شروع به باز شدن می کند این حالت یعنی اخر بسته شدن سوپاپ دود و اول باز شدن سوپاپ هوا را قیچی سوپاپ  (اله کلنگی) یا بالانس می گویند باز و بسته شدن سوپاپ را میتوان از روی فنر یا حالات اسبک و در موتورهای  میل  سوپاپ  رو ز شکل بادامک میل سوپاپ تشخیص داد برای فیلر گیری صحیح باید زمان سوپاپ ها و فاصله اسبک  یا  تایپت را با هم میزان کرد که تایمینگ سوپاپها در انها تاثیر نداشته  باشد و با توجه   به دیاگرام سوپاپ  متوجه می شویم  زمانی که پیستون در حالت احتراق است تایمینگ سوپاپ ها در ان هیچ گونه تاثیری ندارد  پس بهترین حالت  برای فیلر گیری زمانی است که یک  سیلندر  در اول حالت احتراق  باشد و  پیستون  در  نقطه مرگ  بالا باشد  در مجموع  دانستن  قیچی سوپاپها برای یک تعمیر کار ضروری می باشد



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:40 | نویسنده : ناصح مهاجر

منیفولد و سوپاپ 1 

منیفولدهای ورودی متغیر 

1- منیفولدهای طول متغیر  

2- سیستم ورودی انعکاسی  

انواع تایمینگ متغیر سوپاپ  

  با سیستم تغییر بادامک VVT 1-

  با سیستم بادامک مرحله ای VVT 2-

  با سیستم های تغییر بادامک + بادامک مرحله ای VVT3-

منیفولدهای ورودی متغیر 

منیفولدهای ورودی متغیر از اواسط دهه 90 بطور گسترده  رایج شدند. با استفاده از این سیستم گشتاور پایین در  دور متوسط افزایش یافته بدون این که تاثیری بروی مصرف  سوخت یا قدرت در دورهای بالا داشته  باشد.  بد ین  وسیله انعطاف پذیری موتور بهبود می یابد. یک منیفولد  معمولی برای قدرت درسرعت بالا یا گشتاو در دورپایین و یا یک  توازن بین آنها بهینه سازی می شود اما منیفولد ورودی متغیر یک یا بیش از دومرحله برای انجام وظیفه  در سرعت مختلف موتورمطرح میکند گفته میشود  نتایج استفاده ازاین سیستم شبیه استفاده ازسیستم تایمینگ  متغیرسوپاپ(VVT) می باشد اما مزیت منیفولد ورودی متغیر این است که  گشتاور دور پایین را بیش ازقدرت در دور بالا افزایش می دهد. بنابراین این  سیستم برای خودروهای چهار در(sedan) که هر روز سنگین و سنگین تر می شوند خیلی مفید می باشد. با افزایش خودروهایی که خصوصیات اسپورت دارند مانند  Ferrari 360 M  و 550 M از منیفولدهای ورودی متغیر در کنار تایمینگ متغیر سوپاپ برای قابلیت بهتر در حرکت استفاده می شود  . در مقایسه  با  VVT  منیفولدهای  ورودی  متغیرارزانترمی باشند. برای این  که فقط به چند منیفولد ریخته گری شده و تعداد کمی سوپاپهای الکتریکی احتیاج دارند در مقابل VVT به تعدادی کار انداز هیدر  دقیق ومناسب و یا  حتی تعدادی بادامک مخصوص و میل بادامک نیاز دارد. منیفولدهای ورودی دو نوع میباشند: منیفولدورودی ورودی با طول متغیر و منیفولدهای ورودی انعکاسی . هر دو آنها  از هندسه منیفولدهای  ورودی برای رسیدن به  یک هدف مشابه استفاده می کنند.

منیفولد ورودی طول متغیر

منیفولدهای ورودی طول متغیرمعمولا در خودروهای سواری چهار در(sedan) استفاده می شوند.دربیشتر طراحی ها از دو منیفولد با طول  متفاوت برای تغذیه هر سیلندر استفاده میشود.  منیفولدهای با طول بلند برای  دورهای پایین و منیفولدهای  کوتاه برای دورهای بالا استفاده میشوند. فهمیدن اینکه چرا دور بالا به منیفولد کوتاه احتیاج  دارد ساده  است  چون که با استفاده از آن مکش موتور بطور آزادانه و آسان صورت می گیرد. اما چرا در دورهای پایین منیفولدهای با طول بلند مورد نیاز است ؟

چونکه استفاده از لوله های بلندتر باعث کاهش فرکانس هوای ورودی به سیلندر میشود  به گونه ای که با کاهش دور موتور  تطابق زیادی دارد و باعث بهتر پر شدن سیلندر می شود و بدین ترتیب  گشتاور خروجی  را افزایش می دهد. از طرف دیگر منیفولد ورودی بلند تر جریان هوا را به آرامی هدایت می کند که باعث بهتر مخلوط شدن سوخت و هوا می شود.  

بعضی از سیستمهای طول متغیرارائه شده سه مرحله دارند که از این نوع درAudi V8 استفاده شده است.  

درحقیقت  Audi از منیفولدهای جداگانه استفاده نمی کند. در عوض از یک منیفولد ورودی دورانی که ورودی آن در مرکز روتور آن واقع است استفاده می کند. چرخش مجرای ورودی به وضعیتهای مختلف باعث ایجاد طولهای مختلف در منیفولد می شود.  

ترتیب احتراق به گونه ای است که سیلندرها بطور متناوب از هر یک از محفظه ها تنفس می کنند که باعث ایجاد یک موج فشاری بین آنها م شود. اگر فرکانس موج فشار با دور تطابق داشته باشد  می تواند به پرشدن  سیلندر کمک کند بدین ترتیب راندمان مکش افزایش یافته. فرکانس تولیدی به سطح مقطع لوله های متصل شده بستگی دارد. با بستن یکی ازآنها دردور پایین سطح مقطع به خوبی فرکانس را کاهش می دهد بدین گونه گشتاورخروجی در دور متوسط افزایش می یابد. در دور بالا سوپاپ باز شده و بهتر پر شدن سیلندر را فراهم می کند. سیستم ورودی انعکاسی در مدلهای مختلف پورشه استفاده شده  که اولین آن 964 Carrier بود. در مدل 993 پورشه این سیستم را با منیفولد طول متغیر سه مرحله ای به نام Varioram ترکیب کرد. بخاطر اینکه این سیستم فضای زیادی را اشغال می کرد در مدل 996 فقط ازسیستم ورودی انعکاسی استفاده شد. هوندا  NSX نیز ازدیگر استفاده کنندگان نادر سیستم ورودی انعکاسی می باشد.

کمتر از rpm5000 (چپ   Aوراست بالا):لوله های بلند وسیستم   انعکاسی غیر فعالند. 

RPM5800-5000   )چپB و راست وسط) : لوله های بلند بعلاوه لوله کوتاه ورودی انعکاسی . یکی از لوله های متصل شده ورودی انعکاسی بسته است.

RPM5800 (چپ C و راست پایین ): لوله های بلند بعلاوه لوله کوتاه ورودی انعکاسی و هر دو لوله سیستم ورودی انعکاسی باز میشود . 

خلاصه منیفولدهای ورودی متغیر             

    مزایا : 

بهبود گشتاور تحویلی در دور پایین بدون کاهش قدرت در دور بالا و ارزانتر بودن نسبت به تایمینگ متغیرسوپاپ VVT)).

معایب:

تقریبا فضای زیادی اشغال می کند و تاثیری در افزایش گشتاور در دور بالا ندارد. 

Toyota T-VIS بیشتر موتورهای  4  سوپاپ اولیه در دورهای پایین و متوسط گشتاور خوبی تولید نمی کردند. برای اینکه سطح ورودی بزرگتر باعث کاهش  جریان هوا می شد. مخصوصا درسرعتهای پایین  جریان  هوای  آرام در منیفولد  ورودی یک مخلوط سوخت و هوای ناقص را فراهم می کند. بنابر این باعث ایجاد دتونیشن (Knock) و کاهش قدرت و گشتاور می شود.  بنابراین موتورهای  4  سوپاپ در دورهای بالا قوی می باشند اما در دورهای پایین ضعیف بودند تا وقتیکه تکنولوژی منیفولدهای ورودی متغیر رایج شد. شورولت Cosworth Vega  که در دور پایین ضعیف بود این کار را انجام داد.

منیفولد ورودی دورانی برای موتورهای V6مرسدس بنز مدلهای SLK,CLS,E-class که برای کاهش وزن از جنس منیزیم ساخته می شوند.  در واکنش به آن در واسط دهه 80 سیستم ورودی متغیر تویوتا  T-VIS  را تولید کرد. T-VIS به سرعت کم  جریان هوا در منیفولد شتاب میدهد. تئوری این مسئله ساده می باشد. منیفولد ورودی برای هر سیلندر به دو زیرمنیفولد (sub-manifold) تقسیم میشود که درنزدیکی سوپاپ ورودی به یکدیگرمتصل میشوند. یک سوپاپ پروانه ای نیز به یکی ا ز زیر منیفولدها اضافه شده است. در دورهای کمتراز تقریبا  4650 rpm  سوپاپ پروانه ای برای افزایش سرعت در منیفولد می بایست بسته  باشد. در نتیجه مخلوط خوبی را در منیفولد بدست می آوریم موتورهای تزریق مستقیم از استفاده ازاین سیستم محرومند. زیراسیستم تزریق مستقیم  فضای زیادی را در منیفولد اشغال می کند تایمینگ متغیر سوپاپ VVT

تئوری  :

 بعد از اینکه تکنولوژی چند سوپاپ ( Multi  Valve) در طراحی موتورها استاندارد شد تایمینگ متغیر سوپاپ مرحله بعدی افزایش راندمان موتور می باشد.همانطور که می دانید سوپاپ ها تنفس موتور را فراهم می کنند. تنظیم تنفس که همان تنظیم سوپاپ های  ورودی و خروجی می باشد بوسیله شکل و زاویه بادامک ها کنترل می شود. برای  بهینه سازی  تنفس موتور به تنظیم  سوپاپ مختلف در دورهای متفاوت نیاز می باشد. وقتی که  دور افزایش می یابد  مدت زمان کورس مکش و تخلیه کاهش می یابد بنابراین  هوای تازه به میزان  کافی نمی تواند سریع وارد محفظه احتراق شود درحالیکه گازهای اگزوز نیز با سرعت کافی  محفظه احتراق را ترک نمی کنند.

بنابراین بهترین راه حل باز شدن زودتر سوپاپ ورودی  و دیرتر  بسته شدن  سوپاپ خروجی  می باشد. بعبارت دیگر زمان قیچی (Overlapping) سوپاپ ورودی و خروجی با افزایش دور موتور باید افزایش یابد.  مهندسین سابقا بهترین  تایمینگ سوپاپ را بصورت توافقی انتخاب می کردند. برای مثال یک  وانت بخاطر بازده بهتر دردور پائین ممکن است زمان قیچی کمتری را بکار گیرد اما یک ماشین مسابقه ای بخاطر قدرت بیشتر در دور بالا ممکن است زمان  قیچی قابل ملاحظه ای را بکار گیرد. در خودروهای سواری معمولی ممکن  است تایم سوپاپ بهینه برای دور متوسط بکار گرفته شود  تا هم در دور کم قابلیت خوبی داشته باشد و همچنین  قدرت در دور بالا خیلی کاهش نیابد و شبیه موتورهای دیگر که برای یک دور معین بهینه سازی میشوند  نباشند. با  تایمینگ  متغیر سوپاپ قدرت و گشتاور می تواند در یک محدوده عریض بهینه شود.  

بیشترین نتایج قابل توجه عبارنتد از :  

Ø  موتور می تواند در دور بالاتری کار کند بنابراین حداکثر قدرت تولید می شود. برای  مثال قدرت ماکزیمم  

Ø  موتور نیسان 2 لیتری Neo VVL 25% بیشتر از نمونه بدون VVT آن می باشد.  

Ø افزایش گشتاور در دور پائین ، بنابراین نیروی محرکه بهبود می یابد. برای مثال موتور فیات   

نمودار منیفولد

بلند شدن متغیر سوپاپ  Variable Lift

در بعضی از طراحی ها بلند شدن سوپاپ می تواند بر حسب دور موتور متغیر باشد. در دوربالا افزایش بلند شدن سوپاپ ورود هوا و خروج گازهای اگزوز را تسریع می کند  بنابراین  تنفس موتور را بهبود می بخشد. البته بلند شدن این چنینی در دور آرام اثر معکوسی شبیه ناقص مخلوط شدن سوخت و هوا ایجاد میکند بنابراین بازده را کاهش می دهد و یا حتی منجر به خاموش شدن موتور (misfire)  می شود. بنابراین  بلند شدن سوپاپ  باید بر  . طبق دور موتور باشد.

منیفولد و سوپاپ 2

انواع مختلف VVT 

1- VVT با سیستم تغییر بادامک

سوپاپ

سیستم 3 مرحله ای VTEC هوندا 

هوندا آخرین مدل VTEC  ، 3  مرحله ای را در موتور sohc Civic  در ژاپن بکار برد.این مکانیزم 3 بادامک با تایمینگ و پروفیل بلند کردن سوپاپ متفاوت دارد.  

توجه داشته باشید که ابعادشان نیز متفاوت میباشد. بادامک میانی (تایمینگ دور بالا و حداکثر بلند شدن سوپاپ ) در دیاگرام بالا نشان داده شده است که بزرگترین بادامک نیزمیباشد. بادامک سمت راست آن ( تایمینگ دورآرام و متوسط بلند شدن سوپاپ ) که سایز آن متوسط می باشد. بادامک سمت چپ  ( تایمینگ دور آرام و حداقل  بلند شدن سوپاپ ) که کوچکترین بادامک نیز می باشد. 

مکانیزم عملکرد آن مطابق شرح ذیل می باشد: 

مرحله 1 ( دور آرام ) : 3 قطعه اسبک بطور آزادانه حرکت می کنند.  بنابراین اسبک سمت چپ سوپاپ ورودی سمت چپ را به میزان کمی بلند میکند. اسبک سمت راست نیز سوپاپ سمت راست را به میزان متوسط بلند می کند.  تایمینگ هر دو بادامک در مقایسه با بادامک میانی که فعلا فعال نمی باشد حدودا برای دور آرام می باشد. 

مرحله 2 ( دور متوسط ) : فشار هیدرولیکی ( قسمت نارنجی رنگ در شکل ) اسبکهای سمت چپ و راست را به یکدیگرمتصل میکند درحالیکه اسبک میانی و بادامک آن به کارخودشان ادامه می دهند. ازآنجائیکه  بادامک سمت راست بزرگتر از بادامک  سمت چپ  می باشد بادامکهای  متصل شده به یکدیگر حرکت خود را در واقع از بادامک سمت راست می گیرند. در نتیجه هر دو سوپاپ ورودی در تایمینگ دور آرام ولی با بلند شدن متوسط کار می کنند مرحله 3 ( دور بالا ) :  فشار هیدرولیک هر 3 اسبک را به یکدیگر متصل می کند. از آنجائیکه  بادامک  میانی بزرگترین بادامک می باشد هر دو سوپاپ بوسیله بادامک دور بالا حرکت می کنند. بنابراین تایمینگ دور بالا و حداکثر بلند شدن سوپاپ فراهم می شود. 

2- VVT  با سیستم بادامک مرحله ای          

این سیستم ساده ترین و ارزانترین و رایجترین مکانیزمی است که امروزه استفاده می شود. با اینکه سیستم کوچکی می باشد کارآیی موتوررا افزایش می دهد.اساسا این سیستم تایمینگ سوپاپها رابوسیله  تغییرمرحله ای  زاویه  میل  میل بادامک تغییر می دهد. برای مثال در دور بالا میل بادامک سوپاپ ورودی به میزان 30 درجه گردش کرده و باعث زودتر باز شدن سوپاپهای ورودی می شود. این حرکت بوسیله سیستم مدیریت موتور برطبق نیاز و بوسیله دنده های  سوپاپ هیدرولیکی بکار می افتد.توجه داشته باشید که  VVTبا سیستم بادامک مرحله ای نمی تواندمدتزمان باز بودن سوپاپ را تغییر دهد آن فقط اجازه زودتر باز شدن یا دیرتر باز شدن سوپاپ را می دهد. البته نتیجه  زودتر باز شدن زودتر بسته شدن نیز میباشد.همچنین این سیستم برخلاف VVT با سیستم تعویض بادامک میران بلند شدن سوپاپ را تغییر نمی دهد. این سیستم ازساده ترین و ارزانترین انواع  VVT  می باشد برای اینکه هرمیل بادامک فقط به یک کارانداز هیدرولیکی یاز  دارد و برخلاف  سیستم های دیگر  که برای هر سیلندر  یک مکانیرم مجزا بکار گرفته می شود.  

پیوسته یا گسسته 

ساده ترینVVT   با سیستم بادامک مرحله ای فقط در 2 یا 3 زاویه ثابت می تواند تنظیم شود که از بین 0  تا 30 درجه انتخاب می شود. بهترین سیستم جابجائی متغیر پیوسته می باشد که بر حسب دور موتور یک مقدار اختیاری بین 0 تا 30 درجه را انتخاب می کند. بدیهی است این سیستم تایمینگ مناسبی را برای هر دور فراهم میکند.بنابراین انعطاف پذیری موتور را به میزان زیادی افزایش می دهد. هرچند که تغییر آن بسیار آرام و قابل توجه می باشد.  

میل بادامک ورودی و خروجی

در بعضی از طراحی ها مانند سیستم BMW Double Vanos  هم در میل بادامک ورودی و هم در میل بادامک خروجی از سیستم VVT بادامک مرحله ای استفاده می شود. این باعث افزایش زمان قیچی سوپاپها شده وراندمان را افزایش می دهد.

این نشان می دهد که چرا راندمان BMW M3 3.2 (100hp/litre) از مدل قبلی آن M3 3.0 (95hp/litre)  که فقط در میل بادامک ورودی از این سیستم استفاده می کند بیشتر است. در مدل E46 3-series Double Vanos  , ماکزیمم محدوده جابجائی میل بادامک ورودی 40 درجه و میل بادامک خروجی 25 درجه می باشد.  

مزایا 

ساده و ارزان می باشد. VVT پیوسته گشتاور تحویلی را در تمام دورها افزایش می دهد. 

معایب

نداشتن سیستم بلند شدن سوپاپ و مدت زمان باز بودن بطور متغیر. بنابراین قدرت ماکزیمم آن از VVT با سیستم تعویض با کمتر م باشد. BMW'S Vanos فهمیدن عملکرد این سیستم از روی عکس آسان است. در انتهای میل بادامک یک دنده مورب بسته شده است. دنده مورب به یک درپوش که می تواند از میل بادامک دور و یا به آن نزدیک شود متصل شده است. بدلیل اینکه محور میل بادامک با دنده مورب موازی نمیباشد اگر درپوش به سمت میل بادامک فشرده شود زاویه میل بادامک افزایش می یابد به همین ترتیب کشیدن درپوش به سمت عقب باعث کاهش زاویه میل بادامک می شود.

منیفولد

 آیا فشرده شدن یا کشیده شدن بوسیله فشار هیدرولیکی تعیین می شود؟ در سمت راست درپوش دو محفظه وجود دارد  که با روغن پر می شوند ( این محفظه ها بترتیب با رنگهای سبز و زرد در شکل مشخص شده است) و یک پیستون باریک که در جلوی درپوش بسته شده است این دو محفظه را ازهم جدا می کند. روغن ازطریق سوپاپهای مغناطیسی وارد محفظه ها می شود که  فشار روغن را برای فعال شدن محفظه ها کنترل می کند. بعنوان مثال اگرسیستم مدیریت موتوربه سوپاپ محفظه سبز سیگنال ارسال کند آن سوپاپ باز شده و سپس فشار هیدرولیک باعث حرکت پیستون شده و آن رابه سمت عقب فشار می دهد به همراه آن درپوش نیز به سمت میل  بادامک نزدیک می شود بنابراین این جابجائی باعثافزایش زاویه می شود.  

سوپاپها

 

3- VVT با سیستم های  تعویض بادامک + بادامک مرحله ای  ترکیب تعویض بادامک و بادامک مرحله ای می تواند هر دو نیازمندی  قدرت در دور پائین و دور بالا و انعطاف پذیری در تمام محدوده دورموتوررا برآورده کند. اما  ناچارا پیچیدگی بیشتری دارد. درزمان نوشتن این مقاله  فقط پورشه وتویوتا چنین طرحی داشتند .هرچند درآینده ماشین های مسابقه ای بیشترو بیشترازاین طرح استفاده خواهند کرد .   

Toyota VVTL-I  

VVTL-I  تویوتا پیشرفته ترین طرح VVT می باشد . وظایفی که این سیستم بخوبی انجام می دهد عبارنتد از:

Ø        تایمینگ متغیر سوپاپ بادامک مرحله ای پیوسته  

Ø        بلند شدن سوپاپ متغیر دو مرحله ای بعلاوه مدت زمان باز بودن متغیر

Ø        هم برای سوپاپهای ورودی و هم برای سوپاپهای خروجی استفاده می شود. 

شبیه VVT-I  تایمینگ متغیرسوپاپ بوسیله تغییرزاویه که بوسیله جلو یا عقب رفتن میل بادامک بوسیله راه  انداز هیرولیکی که در انتهای میل سوپاپ متصل شده انجام می شود. تایمینگ متغیر بر حسب دور موتوروشتاب و غیره  محاسبه می شود. هرچند تغییرات در یک محدوده عریض در حدود 60  درجه صورت می گیرد  بنابراین شاید اینسیستم کاملترین طرح تا به امروز باشد. چه چیزی  VVTL-I را نسبت به   VVT-I معمولی ممتاز می کند؟ همه می دانند که L نشانه ای برای بلند شدن سوپاپ ( Valve Lift) می باشد. شبیه VTEC سیستم تویوتا ازیک اسبک برای کار انداختن هر دو سوپاپ  ورودی استفاده می کند. این سیستم  همچنین دو بادامک دارد که باعث  فعال شدن اسبکها می شوند.  بادامک ها  شکلهای  متفاوت  دارند یکی با پروفیل بزرگتر برای افزایش مدت زمان باز بودن سوپاپ در دور بالا و دیگری با پروفیل کوچکتر برای دور آرام . در دورآرام بادامک دورآرام اسبکها را ازطریق یک رولبرینگ ( برای کاهش اصطکاک ) بکارمیاندازد. بادامک دوربالاهیچ تاثیری براسبک  ندارد زیرا  فضای  زیرا  فضای کافی در زیر تایپیت هیدرولیکی وجود دارد.   

در مقایسه با VTEC هوندا وسیستمهای  مشابه سیستم تویوتا  تایمینگ متغیر پیوسته  دارد که به افزایش انعطاف پذیری موتور در دور آرام و دور بالا کمک می کند. بنابراین این سیستم مسلما امروزه بهترین طرح می باشد. هر چند ساخت آن شاید خیلی پیچیده و خیلی گران باشد.  

مزایا

VVT  پیوسته گشتاورتحویلی درتمام دورها راافزایش میدهد و مدت زمان بلند شدن متغیر دارد که باعث افزایش قدرت در دور بالا می شود.

معایب

خیلی پیچیده و گران می باشد .

Porsche Variocam Plus

سیستم  Variocam Plus  پورشه طرح پیشرفته Variocam که درمدلهای Carrera و Boxster استفاده میشود.  

Variocam  ابتدا درسال 1991 در مدل 968 تولید شد. این سیستم اززنجیرتایمینگ برای تغییرزاویه میل بادامک استفاده میکرد بنابراین تایمینگ متغیر 3 مرحله ای را فراهم می کرد. این طرح یک طرح انحصاری و بی نظیر می باشد اما آن نسبت به کاراندازهای هیدرولیکی دیگر تولید کنندگان واقعا نا مرغوب می  باشد بویژه که آن اجازه تغییر زاویه زیاد به میل بادامک را نمی دهد .  بنابراین پورشه Variocam Plus را در مدل Turbo 911  استفاده کرد و سرانجام از یک راه انداز هیدرولیکی  متداول  بجای  زنجیر استفاده کرد. هر چند مدل  Plus بعلاوه  بلند شدن متغیر سوپاپ تغییرات زیادی  پیدا کرده است و این سیستم از تایپیت های هیدرولیکی  نیز استفاده می کند . همانطوری که در شکل زیر دیده می شود .هر سوپاپ  میتواند بوسیله سه بادامک فعال شود .

مرکزی  سوپاپ را به میزان کمی بلند می کند  ( 3mm) و مدت  زمان باز بودن سوپاپها کوتاه می باشد.  بعبارت دیگر این  بادامک دور آرام می باشد . دو بادامک  خارجی  دقیقا شبیه هم  می اشند  با تایمینگ  برای دور بالا و سوپاپ ها را  به میزان بیشتری بلند می کنند ( 10 mm) . انتخاب  نوع بادامک بر حسب تایپیتهای متغیر صورت می گیرد که  شامل یک تایپیت داخلی و یک تایپیت خارجی می باشد . آنها بوسیله یک کارانداز هیدرولیکی که یک پین را از میان آنها عبور می دهد به یکدیگر قفل می شوند. با این روش بادامک دوربالاسوپاپ ها را فعال می کند که  باعث افزایش مدت زمان باز بودن و میزان بلند شدن سوپاپ می شود. اگر تایپیت ها به یکدیگر قفل نباشند .

سوپاپها ازطریق تایپیتهای داخلی فعال میشوند وتایپیتهای خارجی مستقل ازسوپاپها حرکت می کنند.  بنظر می رسد این مکانیزم فوق العاده ساده و کوچک می باشد.  تایپیتهای متغیر فقط کمی  سنگین ترازتایپیت های معمولی میباشد  ولی فضای بیشتری اشغال نمی کند. با این وجود این سیستم قفط برای سوپاپ های ورودی استفاده می شود.

مزایا

گشتاور خروجی در دورآرام و متوسط را افزایش می دهد و مدت زمان بازبودن و میزان بلند شدن متغیرآن قدرت را در دور بالا افزایش می دهد.

معایب

دارای پیچیدگی زیاد و هزینه بالائی می باشد.



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:37 | نویسنده : ناصح مهاجر

توربوشارژ

وظیفه توربو شارژ دمیدن هوا با فشار به داخل سیلندر می باشد توربوشارژ با این کار در خروج دود کمک کرده در ضمن توربوشارژ با این کار هوای  بیشتری به  داخل سیلندر  تزریق می کند این کار توربوشارژ باعث بهتر پر کردن سیلندر خواهد شد و راندمان موتور افزایش می یابد

توربوشارژ

 تامین هوای بیشتر در واقع مهیا  ساختن اکسیژن  بیشتر برای  انجام احتراق بوده و این امر سبب احتراق بهتر سوخت در محفظه احتراق و در نهایت قدرت بیشتر موتور خواهد بود در موتورهای دیزل دو زمانه از یک دمنده به همین منظور استفاده می شود که قبلا شرح داده شد فشار هوای ارسالی توسط دمنده تنها اندکی از فشار جو  (فشار اتمسفر) بیشتر است و بنابراین اثر توربو شارژ را نداردتوربو شارژ نیروی خود را از دودهای خروجی موتور می گیرد

تامین هوای موتور(توربوشارژ):

موتورهایی  که توربو  شارژ ندارد به  عنوان موتورهای  بدون توربو شارژ یا موتورهای معمولی یادمی شوند زیرا در این موتورها به علت حرکت پیستون در  داخل  سیلندر  عمل مکش هوا به داخل سیلندرها انجام می شود به این ترتیب  هوای داخل  سیلندر با فشار جو  تامین می گردد حتی درشرایط  ایدال  فشار هوای  ورودی در داخل سیلندرها  به فشار  جو نمی رسد و در عمل به مقدار قابل توجهی کمتر از ان می باشد توربو شارژ جریان  هوای  ورودی به محفظه  احتراق را  تقویت  نموده و باعث افزایش فشار ان به نسب دو برابر فشار جو می گردد این امر سبب افزایش  قدرت خروجی  و گشتاور   موتور از 25 تا4۰ درصد بسته به طراحی توربوشارژ و موتور می شود

توربو شارژر:

توربوشارژر  شامل یک  کمپرسور  و یک توربین می باشد  که هر دو  روی شفت  نصب شده اند و توربین توسط گازهای خروجی حاصل از احتراق چرخانیده می شود به این ترتیب انرژی این گازهاکه در صورت نبودن توربوشارژ تلف می شد برای چرخانیدن کمپرسور استفاده  می شود و هوای بیشتری برای سیلندرها موتور تامین می کند توربو شارژ دارای یک قسمت دوار (روتور) است که شامل یک شفت می باشد و یک سر ان توربین و سر دیگر ان یک کمپرسور نصب  شده است این قسمت دوار داخل یک پوسته قرار گرفته که دارای دو محفظه یکی توربین و دیگری برای کمپرسور می باشد گازهای خروجی موتور مستقیما وارد محفظه توربین شده و توربین و در نتیجه کمپرسور را با سرعت  بالایی  به چرخش  وا  می دارند از هوا از مرکز محفظه کمپرسور مکیده شده و تحت فشار قرار گرفته و توسط نیروی گریز از مرکز که  بواسطه  سرعت بسیار بالای چرخش کمپرسور ناشی  می شود به درون  موتور  رانده  می شود به  این  ترتیب  هوای بیشتری به داخل  سیلندر ارسال  می گردد  اگر سوخت بیشتری به  داخل سیلندرها تزریق شود انرژی گازهای خروجی نیزافزایش یافته و در نتیجه سرعت چرخش توربوشارژ نیز بالاتر می رود این امر سبب افزایش هوای تامین شده برای موتور می گردد  

اجزای توربوشارژ :

اجزای توربو شارژ عبارتند از توربین در سمت راست و کمپرسور در سمت دیگر (بستگی به دید )محور دوار در وسط حامل توربین و کمپرسور  می باشد و از داخل  دارای مجرایی است که در ان روغن به  منظور روغنکاری و خنک کاری  محور و یاتاقان  جریان دارد پوسته محفظه توربین دارای پره های ثابت می باشد که به عنوان نازل های حلقوی عمل می کنند گازهای خروجی موتور روی پره های ثابت پوسته محفظه چرخیده و سپس با سرعت بسیار زیاد روی پره های توربین برخورد می نماید

انواع توربو شارژ :

 همه توربو شارژ ها به یک طریق عمل می کنند اما چگونگی ورود گازهای خروجی به داخل توربینم تفاوت می باشد سه نوع توربوشارژ وجود دارد این سه  نوع عبارتند از نوع حلزونی ساده و نوع حلزونی با افزایش سرعت و نوع ضربانی

 توربوشارژ حلزونی ساده:

این نوع توربوشارژ دارای یک معبر تنها می باشد که گازهای خروجی موتور را به چرخ توربین منتقل می کند حلزون یک معبر مارپیچ در درون پوسته محفظه توربین می باشد که مقطع ان ثابت نبوده و کاهش می یابد این تغییر به دلیل ثابت  نگهداشتن  سرعت  گازهای خروجی  هنگام  عبور از طول حلزن می باشد گازهای خروجی به طور پیوسته از حلزون عبور کرده و وارد توربین می شوند گازها از میان پره های توربین عبور کرده  و باعث  چرخش  توربین شده و سپس  توربین  را  ترک و وارد  اگزوز  می شوند چرخ  کمپرسور به همراه  توربین روی یک شفت نصب شده است  پره های  کمپرسور دارای انحنا بوده و تحت تاثیر نیروی گریز از مرکز هوا را  فشرده می سازد  هوای فشرده  شده با سرعت زیاد و فشار کم از لبه پره های کمپرسور جدا می شود هوا از دیفیوز عبور نموده وارد قسمت حلزونی پوسته کمپرسور می شود  این امر سبب می گرد از انکه هوا مستقیما وارد محفظه احتراق شود ان کاهش و فشار ان افزایش یابد

توربوشارژ حلزونی با افزاینده سرعت:

این نوع توربوشارژ دارای یک حلزون و  یک افزاینده سرعت (پره های ثابت) یا دو حلزون و دو مجرامی باشد  گازهای خروجی  وارد منیفولد  دود و از انجا وارد حلزونها شده اما بجای انکه مستقیماوارد چرخ توربین شوند از پره های ثابت روی  پوسته توربین  عبور نموده  و با زاویه مناسب بسیار زیاد  و با انرژی  بالاتر با پره های  توربین برخورد می نماید سمت  کمپرسور توربو  شارژ همانطور که قبلا در نوع حلزونی توضیح داده شد عمل می کند  

توربوشارژ نوع ضربانی:

استفاده از این نوع توربوشارژ یک منیفولد دود نوع ضربانی را طلب می کند زیرا از ضربات دودهای خروجی  که  از سیلندرها  موتور خارج می شود استفاده  می کند  این امر سبب افزایش سرعت توربوشارژ می شود منیفولد  نوع  ضربانی دارای معبری از هر سیلندر می باشد که در انتها به دو کانال اصلی جداگانه تبدیل می شوند این دو کانال به دو کانال روی پوسته توربین می پیوندند منیفولد دارای مقطع نسبتاکوچکی می باشد تا از ضربات بهره بیشتری ببرد  زیرا در منیفولد  بزرگتر اتلاف بیشتر است شکل منیفولد به گونه ای طرح گشته تا از جریان گازهای ازاد نیز به خوبی گازهای توده ای استفاده کنددر حین شتاب گیری این امر اجازه می دهد انرژی گازهای خروجی سریعا به توربین رسیده و شتاب موتور بهبود یابد برای بهره بردن بهتر از  گازهای توده ای  سیلندرها بطور  یک  در میان با توجه به ترتیب احتراق به یک کانال مرتبط گشته اند مثلا در یک موتور شش سیلندر که ترتیب احتراق 4-2-6-3-5-1 می باشد

سیلندرهای 1و2و3 به یک کانال و سیلندرهای 4و5و6 به کانال دیگر متصل می گردند به این ترتیب باعث می شود توده های دود بیشتر از هم جدا باشند و اثر بیشتری خواهد داشت

توربو شارژ

 

 



تاريخ : پنجشنبه چهاردهم مهر 1390 | 18:33 | نویسنده : ناصح مهاجر

موتور وانكل

 موتور دورانی یک  موتور احتراق داخلی است درست مثل موتور اتومبیل ولی کاملا متفاوت با موتور های مرسوم پیستونی کار می کند.در یک موتور پیستونی حجم مشخصی از فضا (سیلندر) متناوبا چهار کار متفاوت را انجام می دهد.مکش ،تراکم ،احتراق ،و خروج دود.موتور

دورانی همین کار را انجام می دهد اما هر کدام در جای مخصوص خوذ انجام می شود و این شبیه این است که برای هر کدام از چهار مرحله یک سیلندر جداگانه داشته باشیم و پیستون به طور پیوسته از یکی به بعدی حرکت کند.

موتور دورانی که مخترع آن دکتر فلیکس وانکل بود، گاهی موتور وانکل یا موتور دورانی وانکل نامیده می شود.در این مقاله می آموزیم که موتور دورانی چگونه کار می کند.

مانند یک موتور پیستونی،موتور دورانی از فشار تولید شده هنگام احتراق مخلوط سوخت و هوا استفاده می کند.در موتور پیستونی،این فشار در سیلندر جمع می شود و پیستون را به جلو و عقب می راند.میل لنگ حرکت رفت و برگشتی پیستون ها را به حرکت دورانی تبدیل می کند.

در یک موتور دورانی،فشار حاصل از احتراق،در یک اتاقک ایجاد می شود که این اتقک قسمتی از فضای موتور است که به وسیله ی وجه روتور مثلثی شکل پدید می آید و موتور دورانی از این اتاقک به جای پیستون استفاده می کند.

روتور و محفظه ی یک موتور دورانی در Mazda RX-7

این قسمت ها جایگزین پیستون ها،سیلندر ها،سوپاپ ها،میل سوپاپ و میل لنگ در موتور پیستونی می شود.روتور مسیری را طی می کند که در این مسیر هر سه گوش روتور با محفظه در تماس باقی می ماند و سه حجم مجزای گاز را ایجاد می کند.وقتی روتور می چرخد،این سه حجم متناوبا منبسط و منقبض می شوند.همین انقباض و انبساط است که هوا و سوخت را به داخل موتور می کشد،آن را متراکم می کند و انرژی قابل استفاده آن را می گیرد و سپس دود را خارج می کند.

در ادامه به داخل موتور دورانی خواهیم پرداخت تا قسمت هایش را بشناسیم اما اینک به مدل تازه ی موتور دورانی نگاهی می اندازیم:

مزدا RX-8 :

شرکت مزدا در تولید و توسعه ی خودرو هایی که از موتور دورانی استفاده می کنند سابقه ی طولانی دارد. مزدا RX-7 که در 1978 به فروش رسید موفق ترین خودرو با موتور دورانی بوده است. ولی قبل از آن خودرو ها،کامیون ها و حتی اتوبوس هایی با موتور دورانی تولید شده بودند.سرآغاز آن ها نیز Cosmo sportدر 1967 بود.آخرین سالی که RX-7 در آمریکا فروخته شد سال 1995 بود ولی موتور دورانی در آینده ی نزدیک به بازار برمی گردد .



مزدا RX-8 خودرو جدیدی از شرکت مزدا است که یک موتور دورانی جدید و برتر به نام Renesis را عرضه کرده است.این موتور که موتور بین المللی سال 2003 نامیده شد،به صورت طبیعی مکش دارد و یک موتور 2 روتوره می باشد که قدرت آن 250 اسب بخار است.
موتور دورانی یک سیستم جرقه و تحویل سوخت دارد که شبیه به قسمتهای مشابه در موتور پیستونی هستند.در ادامه به معرفی بخش های اصلی موتور دورانی می پردازیم:

وانکل

وانکل یا دورانی

روتور:

روتور سه سطح محدب دارد که هر کدام همانند یک پیستون عمل می کند.هر سطح یک فرورفتگی دارد که حجم مخلوط هوا و سوخت را در موتور افزایش می دهد.


در قسمت انتهایی هر سطح یک تیغه ی فلزی وجود دارد که اتاقک احتراق را آب بندی می کند و مانع خروج مواد از اتاقک احتراق می شود.همچنین حلقه های فلزی در هر طرف روتور وجود دارند که به اطراف اتاقک احتراق محکم می شوند.

روتور یک سری دندانه های داخلی دارد که در مرکز یک لبه بریده شده اند.این دندانه ها با چرخ دنده هایی که به بدنه ی موتور محکم شده اند درگیر می شوند.این در گیر شدن مسیر و جهت حرکت روتور در داخل بدنه را مشخص می کند.

بدنه:

بدنه تخم مرغی شکل است.شکل اتاقک احتراق به گونه ای طراحی شده است که سه راس روتور همواره در تماس با دیواره ی اتاقک خواهند بود و سه حجم جدای گاز را ایجاد می کنند.

هر قسمت بدنه به یک مرحله از عمل احتراق اختصاص دارد.این چهار مرحله عبارتند از:

1-مکش

2-تراکم

3-احتراق

4-تخلیه

مجراهای مکش و تخلیه در بدنه طراحی شده اند. این مجرا ها سوپاپ ندارند.اگزوز خودرو مستقیما به مجرای تخلیه وصل می شود. مجرای مکش هم مستقیما به دریچه ی ساسات وصل می شود.

محور خروجی:

محور خروجی قطعه های گردی دارد که خارج از مرکز(خارج از محور میله) نصب شده اند. هر روتور روی یکی از این قطعات خارج از مرکز نصب می شود.این قطعه ها تقریبا شبیه میل لنگ عمل می کنند.هنگامیکه روتور مسیر خودش را درون بدنه طی می کند،به این قطعه ها فشار می آورد و از آن جاییکه قطعه ها خارج از مرکز اند،نیروی اعمال شده از روتور به قطعه ها گشتاوری بر میله وارد می کند و آن را می چرخاند.

اکنون بیایید ببینیم این قسمت ها چگونه به هم متصل می شوند و چگونه نیروی حرکتی را ایجاد می کنند.

یک موتور دورانی به صورت لایه ای سر هم می شود.موتور دو روتوره که ما بررسی کردیم 5 لایه اصلی دارد که به وسیله حلقه ای از غلاف های دراز کنار هم نگه داشته شده اند و سیال خنک کننده که در راههای مخصوص خود جریان دارد همه ی قطغات را در بر می گیرد.

دو لایه ی انتهایی شامل مهره ها ، یاتاقان ها و شفت خروجی می باشد.آن ها همچنین دو قسمت اتاقک را که شامل روتور ها می شوند را به هم متصل می کنند.سطح داخلی این قطعات خیلی صاف و صیقلی می باشد که کمک می کند مهره های روی روتور کار خود را به خوبی انجام دهند.یک دریچه ورودی بر روی هر کدام از این قطعات انتهایی وجود دارد.

یکی از دو قطعه انتهایی از یک موتور دو روتوره ی ونکل

لایه ی بعدی (از بیرون به داخل) اتاقک تخم مرغی شکل روتور است که دریچه های اگزوز را شامل می شود.


قسمتی از اتاقک روتور(به مکان مجرای تخلیه توجه کنید)

قطعه میانی شامل دو دریچه ورودی می باشد که هر کدام از آن ها برای یکی از روتور هاست.این قطعه علاوه بر این دو روتور را از یکدیگر مجزا می کند لذا سطوح خارجی آن بسیار صاف است.
قطعه ی میانی برای هر روتور یک دریچه ورودی دیگر فراهم می کند.
در مرکز هر روتور یک چرخ دنده ی بزرگ داخلی وجود دارد که روی یک چرخ دنده ی کوجک تر حرکت می کند که این چرخ دنده ی کوچک به اتاقک موتور متصل شده است. این قسمت آن چیزی است که چرخش روتور را ایجاد می کند.روتور همچنین روی پوسته بزرگ و دایروی شفت خروجی حرکت می کند.
در ادامه خواهیم دید که موتور چگونه نیروی محرک تولید می کند.
موتورهای دورانی چرخه ی چهار زمانه ای را طی می کنند که شبیه چرخه ایست که موتور پیستونی در آن کار می کند.ولی در موتور دورانی نحوه ی رسیدن به هدف کاملا متفاوت است.

قلب یک موتور دورانی،روتور آن است که معادل پیستون در موتورهای پیستونی می باشد.

روتور روی یک پوسته ی بزرگ دایروی روی شفت خروجی نصب می شود.این پوسته از خط مرکزی شفت انحراف دارد و مانند یک دسته اهرم در جرثقیل های کوچک عمل می کند و به روتور قدرت لازم برای چرخاندن شفت خروجی را می دهد.هنگامی که روتور درون اتاقک می چرخد،پوسته را حول دایره هایی می چرخاند که به ازای هر دور روتور،پوسته 3 دور می چرخد.
هنگامی که روتور درون اتاقک می چرخد سه قسمتی که توسط روتور در فضای اتاقک از هم جدا می شوند،حجمشان تغییر می کند(مطابق شکل بالا) این تغییر حجم باعث ایجاد عملیاتی شبیه به پمپ کردن می شود.حال به بررسی هر کدام از چهار مرحله ی موتور دورانی می پردازیم.

1-مکش       :

فاز مکش هنگامی آغاز می شود که نوک روتور از دریچه ی ورودی عبور می کند.وقتی که دریچه مکش باز می شود در ابتدا حجم این قسمت در حداقل مقدار خود است و با ادامه حرکت روتور حجم افزایش می یابد و هوا به داخل کشیده می شود.
وقتی راس دیگر روتور از دریچه مکش عبور می کند دیگر هوایی وارد این قسمت نمی شود و مرحله تراکم آغاز می شود.

2-ترا  کم: 

همچنانکه روتور به حرکت خود ادامه می دهد، حجم هوا کاهش می یابد و مخلوط هوا و سوخت متراکم می شود.زمانی که وجه روتور به مقابل شمع ها می رسد،حجم این قسمت به حداقل مقدار خود نزدیک می شود. در این هنگام عملیات احتراق آغاز می شود.

3-احتراق:

اکثر موتور های دورانی دو شمع دارند.زیرا اگر تنها یک شمع وجود داشت به خاطر اینکه اتاقک احتراق نسبتا دراز است،جرقه نمی توانست به خوبی و با سرعت مناسب گسترش پیدا کند.
وقتی شمع ها جرقه می زنند،مخلوط هوا و سوخت آتش می گیرد و افزایش فشار روتور را به حرکت در می آورد.
فشار حاصل از احتراق باعث می شود که روتور در جهتی حرکت کند که حجم افزایش یابد.گازهای احتراق منبسط می شوند و با حرکت دادن روتور نیروی محرکه تولید می کنند تا هنگامی که نوک روتور به دریچه تخلیه برسد.

4-تخلیه:

هنگامی که نوک روتور از دریچه ی تخلیه عبور می کند،گازهای احتراق که فشار بالایی دارند از اگزوز خارج می شوند.همچنانکه روتور به حرکت خود ادامه می دهد،اتاقک منقبض می شود و گازهای باقی مانده را به بیرون هدایت می کند.زمانی که حجم به حداقل مقدار خود نزدیک می شود، نوک روتور از کنار دریچه ی مکش عبور می کند و چرخه دوباره تکرار می شود.

نکته ی ظریف در مورد موتور دورانی این است که هر کدام از سه وجه روتور همواره در حال طی کردن یک قسمت چرخه هستند (در یک دور چرخش کامل روتور،سه بار مرحله احتراق وجود دارد). ولی به خاطر داشته باشید که شفت خروجی به ازای هر دور چرخش روتور سه دور می زند که این یعنی به ازای هر دور چرخش شفت خروجی یک مرحله احتراق داریم.

ویژگی های متعددی وجود دارد که موتور دورانی را از یک موتور پیستونی معمولی متمایز می کند:

● قسمتهای متحرک کمتر:

در موتور دورانی تعداد قسمت های متحرک به مراتب کمتر از یک موتور پیستونی مشابه است.یک موتور دورانی دو روتوره سه قسمت متحرک دارد:دو روتور و یک شفت خروجی.حتی ساده ترین موتور پیستونی چهار سیلندر،حداقل 40 قسمت متحرک دارد:پیستون ها،میل بادامک،سوپاپ ها،فنر سوپاپ ها ،رقاصک ها،تسمه تایم،چرخ دنده ها و میل لنگ،میله های رابط.

این تعداد کم قسمت های متحرک،قابلیت اطمینان موتورهای دروانی را بالا می برد.به همین دلیل است که بعضی از سازنگان فضاپیما،موتورهای دورانی را ترجیح می دهند.

● یکنواختی حرکت  :

همه ی قسمت های موتور دورانی در یک جهت و به طور پیوسته می چرخند و تغییر جهت های ناگهانی (مانند پیستون ها) وجود ندارد.

موتورهای دورانی از نظر داخلی به وسیله ی وزنه های تعادلی چرخان ،که برای از بین بردن ارتعاشات نصب شده اند، متعادل می شوند.

تحویل نیرو در موتورهای چرخان نیز یکنواخت تر انجام می شود.از آنجاکه هر مرحله احتراق در چرخس روتور به اندازه ی 90 درجه پایان می یابد و شفت خروجی به ازای هر دور روتور، سه دور می زند، بنابراین هر مرحله احتراق پس از 270 درجه چرخش شفت خروجی پایان می یابد. این بدان معنی است که یک موتور تک روتوره،برای 4/3 از هر دور چرخش شفت خروجی ، نیروی محرکه تولید می کند. این را مقایسه کنید با یک موتور تک سیلندر پیستونی که در آن احتراق در 180 درجه از دو دوران کامل اتفاق می افتد (یعنی 4/1 از هر چرخش میل لنگ)

● آرامتر بودن حرکت  :

از آن جا که روتور ها با سرعتی به اندازه 3/1 سرعت شفت خروجی می چرخند، قسمت های متحرک موتور دورانی آرامتر از قسمت های موتور پیستونی حرکت می کنند. که این موضوع قابلیت اطمینان موتور های دورانی را افزایش می دهد.

چالش ها:

● معمولا ساختن یک موتور چرخان سخت تر از موتور پیستونی است.

● هزینه های تولید بالاتر می باشد زیرا تعداد موتورهای دورانی که تولید می شوند به اندازه تعداد موتورهای پیستونی نیست.

● موتورهای دورانی معمولا سوخت بیشتری مصرف می کنند زیرا بازده ترمودینامیکی موتور دورانی کم است.(به دلیل اتاقک احتراق بزرگ و دراز و ضریب تراکم پایین)



  • دانلود
  • حاوی